Newer
Older
__copyright__ = "Copyright (C) 2008 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import numpy
import numpy.linalg as la
class SteadyShearFlow:
def __init__(self):
self.gamma = 1.5
self.mu = 0.01
self.prandtl = 0.72
self.spec_gas_const = 287.1
def __call__(self, t, x_vec):
# JSH/TW Nodal DG Methods, p.326
rho = numpy.ones_like(x_vec[0])
rho_u = x_vec[1] * x_vec[1]
rho_v = numpy.zeros_like(x_vec[0])
e = (2 * self.mu * x_vec[0] + 10) / (self.gamma - 1) + x_vec[1]**4 / 2
return join_fields(rho, e, rho_u, rho_v)
def properties(self):
return(self.gamma, self.mu, self.prandtl, self.spec_gas_const)
def volume_interpolant(self, t, discr):
return discr.convert_volume(
self(t, discr.nodes.T
.astype(discr.default_scalar_type)),
kind=discr.compute_kind)
def boundary_interpolant(self, t, discr, tag):
result = discr.convert_boundary(
self(t, discr.get_boundary(tag).nodes.T
.astype(discr.default_scalar_type)),
tag=tag, kind=discr.compute_kind)
return result
def main():
rcon = guess_run_context(
#["cuda"]
)
eoc_rec = EOCRecorder()
def boundary_tagger(vertices, el, face_nr, all_v):
return ["inflow"]
if rcon.is_head_rank:
make_centered_regular_rect_mesh
#mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
refine = 1
mesh = make_centered_regular_rect_mesh((0,0), (10,1), n=(20,4),
#periodicity=(True, False),
post_refine_factor=refine,
boundary_tagger=boundary_tagger)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
for order in [3]:
discr = rcon.make_discretization(mesh_data, order=order,
default_scalar_type=numpy.float64)
from grudge.visualization import SiloVisualizer, VtkVisualizer
#vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
vis = SiloVisualizer(discr, rcon)
shearflow = SteadyShearFlow()
fields = shearflow.volume_interpolant(0, discr)
gamma, mu, prandtl, spec_gas_const = shearflow.properties()
from grudge.models.gas_dynamics import GasDynamicsOperator
op = GasDynamicsOperator(dimensions=2, gamma=gamma, mu=mu,
prandtl=prandtl, spec_gas_const=spec_gas_const,
bc_inflow=shearflow, bc_outflow=shearflow, bc_noslip=shearflow,
inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")
navierstokes_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = navierstokes_ex(t, q)
max_eigval[0] = speed
return ode_rhs
# needed to get first estimate of maximum eigenvalue
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements=", len(mesh.elements))
stepper = RK4TimeStepper()
# diagnostics setup ---------------------------------------------------
from logpyle import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
"w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# timestep loop -------------------------------------------------------
try:
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
step_it = times_and_steps(
final_time=0.3,
#max_steps=500,
logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
for step, t, dt in step_it:
if step % 10 == 0:
#if False:
visf = vis.make_file("shearflow-%d-%04d" % (order, step))
#true_fields = shearflow.volume_interpolant(t, discr)
from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
#("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
#("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
#("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
#("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
],
expressions=[
#("diff_rho", "rho-true_rho"),
#("diff_e", "e-true_e"),
#("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
("p", "0.4*(e- 0.5*(rho_u*u))"),
],
time=t, step=step
)
visf.close()
fields = stepper(fields, t, dt, rhs)
true_fields = shearflow.volume_interpolant(t, discr)
l2_error = discr.norm(op.u(fields)-op.u(true_fields))
eoc_rec.add_data_point(order, l2_error)
print()
print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))