Newer
Older
# Hedge - the Hybrid'n'Easy DG Environment
# Copyright (C) 2008 Andreas Kloeckner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy
import numpy.linalg as la
class SteadyShearFlow:
def __init__(self):
self.gamma = 1.5
self.mu = 0.01
self.prandtl = 0.72
self.spec_gas_const = 287.1
def __call__(self, t, x_vec):
# JSH/TW Nodal DG Methods, p.326
rho = numpy.ones_like(x_vec[0])
rho_u = x_vec[1] * x_vec[1]
rho_v = numpy.zeros_like(x_vec[0])
e = (2 * self.mu * x_vec[0] + 10) / (self.gamma - 1) + x_vec[1]**4 / 2
from hedge.tools import join_fields
return join_fields(rho, e, rho_u, rho_v)
def properties(self):
return(self.gamma, self.mu, self.prandtl, self.spec_gas_const)
def volume_interpolant(self, t, discr):
return discr.convert_volume(
self(t, discr.nodes.T
.astype(discr.default_scalar_type)),
kind=discr.compute_kind)
def boundary_interpolant(self, t, discr, tag):
result = discr.convert_boundary(
self(t, discr.get_boundary(tag).nodes.T
.astype(discr.default_scalar_type)),
tag=tag, kind=discr.compute_kind)
return result
def main():
from hedge.backends import guess_run_context
rcon = guess_run_context(
#["cuda"]
)
from hedge.tools import EOCRecorder, to_obj_array
eoc_rec = EOCRecorder()
def boundary_tagger(vertices, el, face_nr, all_v):
return ["inflow"]
if rcon.is_head_rank:
from hedge.mesh import make_rect_mesh, \
make_centered_regular_rect_mesh
#mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
refine = 1
mesh = make_centered_regular_rect_mesh((0,0), (10,1), n=(20,4),
#periodicity=(True, False),
post_refine_factor=refine,
boundary_tagger=boundary_tagger)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
for order in [3]:
discr = rcon.make_discretization(mesh_data, order=order,
default_scalar_type=numpy.float64)
from hedge.visualization import SiloVisualizer, VtkVisualizer
#vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
vis = SiloVisualizer(discr, rcon)
shearflow = SteadyShearFlow()
fields = shearflow.volume_interpolant(0, discr)
gamma, mu, prandtl, spec_gas_const = shearflow.properties()
from hedge.models.gas_dynamics import GasDynamicsOperator
op = GasDynamicsOperator(dimensions=2, gamma=gamma, mu=mu,
prandtl=prandtl, spec_gas_const=spec_gas_const,
bc_inflow=shearflow, bc_outflow=shearflow, bc_noslip=shearflow,
inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")
navierstokes_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = navierstokes_ex(t, q)
max_eigval[0] = speed
return ode_rhs
# needed to get first estimate of maximum eigenvalue
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements=", len(mesh.elements))
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from hedge.timestep import RK4TimeStepper
stepper = RK4TimeStepper()
# diagnostics setup ---------------------------------------------------
from pytools.log import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
"w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# timestep loop -------------------------------------------------------
try:
from hedge.timestep import times_and_steps
step_it = times_and_steps(
final_time=0.3,
#max_steps=500,
logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
for step, t, dt in step_it:
if step % 10 == 0:
#if False:
visf = vis.make_file("shearflow-%d-%04d" % (order, step))
#true_fields = shearflow.volume_interpolant(t, discr)
from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
#("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
#("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
#("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
#("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
],
expressions=[
#("diff_rho", "rho-true_rho"),
#("diff_e", "e-true_e"),
#("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
("p", "0.4*(e- 0.5*(rho_u*u))"),
],
time=t, step=step
)
visf.close()
fields = stepper(fields, t, dt, rhs)
true_fields = shearflow.volume_interpolant(t, discr)
l2_error = discr.norm(op.u(fields)-op.u(true_fields))
eoc_rec.add_data_point(order, l2_error)
print()
print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))