Newer
Older
# Copyright (C) 2008 Andreas Kloeckner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import numpy
import numpy.linalg as la
def main(write_output=True):
from pytools import add_python_path_relative_to_script
add_python_path_relative_to_script("..")
eoc_rec = EOCRecorder()
if rcon.is_head_rank:
make_rect_mesh, \
make_centered_regular_rect_mesh
refine = 4
mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
post_refine_factor=refine)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
# a second mesh to regrid to
if rcon.is_head_rank:
make_rect_mesh, \
make_centered_regular_rect_mesh
refine = 4
mesh2 = make_centered_regular_rect_mesh((0,-5), (10,5), n=(8,8),
post_refine_factor=refine)
mesh_data2 = rcon.distribute_mesh(mesh2)
else:
mesh_data2 = rcon.receive_mesh()
for order in [3,4]:
discr = rcon.make_discretization(mesh_data, order=order,
default_scalar_type=numpy.float64,
quad_min_degrees={
"gasdyn_vol": 3*order,
"gasdyn_face": 3*order,
})
discr2 = rcon.make_discretization(mesh_data2, order=order,
default_scalar_type=numpy.float64,
quad_min_degrees={
"gasdyn_vol": 3*order,
"gasdyn_face": 3*order,
})
from grudge.visualization import SiloVisualizer, VtkVisualizer
vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
#vis = SiloVisualizer(discr, rcon)
from gas_dynamics_initials import Vortex
vortex = Vortex()
fields = vortex.volume_interpolant(0, discr)
from grudge.models.gas_dynamics import GasDynamicsOperator
from grudge.mesh import TAG_ALL
op = GasDynamicsOperator(dimensions=2, gamma=vortex.gamma, mu=vortex.mu,
prandtl=vortex.prandtl, spec_gas_const=vortex.spec_gas_const,
bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
inflow_tag=TAG_ALL, source=None)
euler_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = euler_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements for mesh 1 =", len(mesh.elements))
print("#elements for mesh 2 =", len(mesh2.elements))
# limiter ------------------------------------------------------------
from grudge.models.gas_dynamics import SlopeLimiter1NEuler
limiter = SlopeLimiter1NEuler(discr, vortex.gamma, 2, op)
#stepper = SSPRK3TimeStepper(limiter=limiter)
stepper = SSPRK3TimeStepper()
#stepper = RK4TimeStepper()
# diagnostics setup ---------------------------------------------------
from pytools.log import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
if write_output:
log_file_name = "euler-%d.dat" % order
else:
log_file_name = None
logmgr = LogManager(log_file_name, "w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# timestep loop -------------------------------------------------------
try:
final_time = 0.2
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
step_it = times_and_steps(
final_time=final_time, logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
for step, t, dt in step_it:
if step % 10 == 0 and write_output:
#if False:
visf = vis.make_file("vortex-%d-%04d" % (order, step))
#true_fields = vortex.volume_interpolant(t, discr)
from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
#("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
#("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
#("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
#("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
#("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
#("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
#("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
],
#expressions=[
#("diff_rho", "rho-true_rho"),
#("diff_e", "e-true_e"),
#("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
#("p", "0.4*(e- 0.5*(rho_u*u))"),
#],
time=t, step=step
)
visf.close()
fields = stepper(fields, t, dt, rhs)
#fields = limiter(fields)
#regrid to discr2 at some arbitrary time
if step == 21:
#get interpolated fields
fields = discr.get_regrid_values(fields, discr2, dtype=None, use_btree=True, thresh=1e-8)
#get new stepper (old one has reference to discr
stepper = SSPRK3TimeStepper()
#new bind
euler_ex = op.bind(discr2)
#new rhs
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = euler_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(t+dt, fields)
#add logmanager
#discr2.add_instrumentation(logmgr)
#new step_it
step_it = times_and_steps(
final_time=final_time, logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr2,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
#new visualization
vis.close()
vis = VtkVisualizer(discr2, rcon, "vortexNewGrid-%d" % order)
discr=discr2
assert not numpy.isnan(numpy.sum(fields[0]))
true_fields = vortex.volume_interpolant(final_time, discr)
l2_error = discr.norm(fields-true_fields)
l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))
eoc_rec.add_data_point(order, l2_error)
print()
print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
logmgr.set_constant("l2_error", l2_error)
logmgr.set_constant("l2_error_rho", l2_error_rho)
logmgr.set_constant("l2_error_e", l2_error_e)
logmgr.set_constant("l2_error_rhou", l2_error_rhou)
logmgr.set_constant("l2_error_u", l2_error_u)
logmgr.set_constant("refinement", refine)
finally:
if write_output:
vis.close()
logmgr.close()
discr.close()
# after order loop
# assert eoc_rec.estimate_order_of_convergence()[0,1] > 6
if __name__ == "__main__":
main()