Newer
Older
# Hedge - the Hybrid'n'Easy DG Environment
# Copyright (C) 2008 Andreas Kloeckner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy
import numpy.linalg as la
def main(write_output=True):
from pytools import add_python_path_relative_to_script
add_python_path_relative_to_script("..")
from hedge.backends import guess_run_context
rcon = guess_run_context()
from hedge.tools import EOCRecorder
eoc_rec = EOCRecorder()
if rcon.is_head_rank:
from hedge.mesh.generator import \
make_rect_mesh, \
make_centered_regular_rect_mesh
refine = 4
mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
post_refine_factor=refine)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
# a second mesh to regrid to
if rcon.is_head_rank:
from hedge.mesh.generator import \
make_rect_mesh, \
make_centered_regular_rect_mesh
refine = 4
mesh2 = make_centered_regular_rect_mesh((0,-5), (10,5), n=(8,8),
post_refine_factor=refine)
mesh_data2 = rcon.distribute_mesh(mesh2)
else:
mesh_data2 = rcon.receive_mesh()
for order in [3,4]:
discr = rcon.make_discretization(mesh_data, order=order,
default_scalar_type=numpy.float64,
quad_min_degrees={
"gasdyn_vol": 3*order,
"gasdyn_face": 3*order,
})
discr2 = rcon.make_discretization(mesh_data2, order=order,
default_scalar_type=numpy.float64,
quad_min_degrees={
"gasdyn_vol": 3*order,
"gasdyn_face": 3*order,
})
from hedge.visualization import SiloVisualizer, VtkVisualizer
vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
#vis = SiloVisualizer(discr, rcon)
from gas_dynamics_initials import Vortex
vortex = Vortex()
fields = vortex.volume_interpolant(0, discr)
from hedge.models.gas_dynamics import GasDynamicsOperator
from hedge.mesh import TAG_ALL
op = GasDynamicsOperator(dimensions=2, gamma=vortex.gamma, mu=vortex.mu,
prandtl=vortex.prandtl, spec_gas_const=vortex.spec_gas_const,
bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
inflow_tag=TAG_ALL, source=None)
euler_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = euler_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements for mesh 1 =", len(mesh.elements))
print("#elements for mesh 2 =", len(mesh2.elements))
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# limiter ------------------------------------------------------------
from hedge.models.gas_dynamics import SlopeLimiter1NEuler
limiter = SlopeLimiter1NEuler(discr, vortex.gamma, 2, op)
from hedge.timestep import SSPRK3TimeStepper
#stepper = SSPRK3TimeStepper(limiter=limiter)
stepper = SSPRK3TimeStepper()
#from hedge.timestep import RK4TimeStepper
#stepper = RK4TimeStepper()
# diagnostics setup ---------------------------------------------------
from pytools.log import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
if write_output:
log_file_name = "euler-%d.dat" % order
else:
log_file_name = None
logmgr = LogManager(log_file_name, "w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# timestep loop -------------------------------------------------------
try:
final_time = 0.2
from hedge.timestep import times_and_steps
step_it = times_and_steps(
final_time=final_time, logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
for step, t, dt in step_it:
if step % 10 == 0 and write_output:
#if False:
visf = vis.make_file("vortex-%d-%04d" % (order, step))
#true_fields = vortex.volume_interpolant(t, discr)
from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
#("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
#("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
#("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
#("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
#("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
#("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
#("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
],
#expressions=[
#("diff_rho", "rho-true_rho"),
#("diff_e", "e-true_e"),
#("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
#("p", "0.4*(e- 0.5*(rho_u*u))"),
#],
time=t, step=step
)
visf.close()
fields = stepper(fields, t, dt, rhs)
#fields = limiter(fields)
#regrid to discr2 at some arbitrary time
if step == 21:
#get interpolated fields
fields = discr.get_regrid_values(fields, discr2, dtype=None, use_btree=True, thresh=1e-8)
#get new stepper (old one has reference to discr
stepper = SSPRK3TimeStepper()
#new bind
euler_ex = op.bind(discr2)
#new rhs
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = euler_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(t+dt, fields)
#add logmanager
#discr2.add_instrumentation(logmgr)
#new step_it
step_it = times_and_steps(
final_time=final_time, logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr2,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
#new visualization
vis.close()
vis = VtkVisualizer(discr2, rcon, "vortexNewGrid-%d" % order)
discr=discr2
assert not numpy.isnan(numpy.sum(fields[0]))
true_fields = vortex.volume_interpolant(final_time, discr)
l2_error = discr.norm(fields-true_fields)
l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))
eoc_rec.add_data_point(order, l2_error)
print()
print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
logmgr.set_constant("l2_error", l2_error)
logmgr.set_constant("l2_error_rho", l2_error_rho)
logmgr.set_constant("l2_error_e", l2_error_e)
logmgr.set_constant("l2_error_rhou", l2_error_rhou)
logmgr.set_constant("l2_error_u", l2_error_u)
logmgr.set_constant("refinement", refine)
finally:
if write_output:
vis.close()
logmgr.close()
discr.close()
# after order loop
# assert eoc_rec.estimate_order_of_convergence()[0,1] > 6
if __name__ == "__main__":
main()