Skip to content
Snippets Groups Projects
wiggly.py 6.19 KiB
Newer Older
"""Wiggly geometry wave propagation."""

from __future__ import division
Andreas Klöckner's avatar
Andreas Klöckner committed
from __future__ import absolute_import
from __future__ import print_function
from six.moves import range

__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""


import numpy as np
from hedge.mesh import TAG_ALL, TAG_NONE  # noqa


def main(write_output=True,
        flux_type_arg="upwind", dtype=np.float64, debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY, 2,
                allow_internal_boundaries=True,
                force_dimension=2)

Andreas Klöckner's avatar
Andreas Klöckner committed
        print("%d elements" % len(mesh.elements))
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
            default_scalar_type=dtype)
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = 0
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import StrongWaveOperator
    op = StrongWaveOperator(-1, discr.dimensions,
            source_f=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag="boundary",
            neumann_tag=TAG_NONE,
            radiation_tag=TAG_NONE,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(dtype=dtype),
            [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]),
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()

GEOMETRY = """
w = 1;
dx = 0.2;
ch_width = 0.2;
rows = 4;

Point(0) = {0,0,0};
Point(1) = {w,0,0};

bottom_line = newl;
Line(bottom_line) = {0,1};

left_pts[] = { 0 };
right_pts[] = { 1 };

left_pts[] = { };
emb_lines[] = {};

For row In {1:rows}
  If (row % 2 == 0)
    // left
    rp = newp; Point(rp) = {w,dx*row, 0};
    right_pts[] += {rp};

    mp = newp; Point(mp) = {ch_width,dx*row, 0};
    emb_line = newl; Line(emb_line) = {mp,rp};
    emb_lines[] += {emb_line};
  EndIf
  If (row % 2)
    // right
    lp = newp; Point(lp) = {0,dx*row, 0};
    left_pts[] += {lp};

    mp = newp; Point(mp) = { w-ch_width,dx*row, 0};
    emb_line = newl; Line(emb_line) = {mp,lp};
    emb_lines[] += {emb_line};
  EndIf
EndFor

lep = newp; Point(lep) = {0,(rows+1)*dx,0};
rep = newp; Point(rep) = {w,(rows+1)*dx,0};
top_line = newl; Line(top_line) = {lep,rep};

left_pts[] += { lep };
right_pts[] += { rep };

lines[] = {bottom_line};

For i In {0:#right_pts[]-2}
  l = newl; Line(l) = {right_pts[i], right_pts[i+1]};
  lines[] += {l};
EndFor

lines[] += {-top_line};

For i In {#left_pts[]-1:0:-1}
  l = newl; Line(l) = {left_pts[i], left_pts[i-1]};
  lines[] += {l};
EndFor

Line Loop (1) = lines[];

Plane Surface (1) = {1};
Physical Surface(1) = {1};

For i In {0:#emb_lines[]-1}
  Line { emb_lines[i] } In Surface { 1 };
EndFor

boundary_lines[] = {};
boundary_lines[] += lines[];
boundary_lines[] += emb_lines[];
Physical Line ("boundary") = boundary_lines[];

Mesh.CharacteristicLengthFactor = 0.4;
"""

if __name__ == "__main__":
    main()