"""Wiggly geometry wave propagation.""" from __future__ import division from __future__ import absolute_import from __future__ import print_function from six.moves import range __copyright__ = "Copyright (C) 2009 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from hedge.mesh import TAG_ALL, TAG_NONE # noqa def main(write_output=True, flux_type_arg="upwind", dtype=np.float64, debug=[]): from math import sin, cos, pi, exp, sqrt # noqa from hedge.backends import guess_run_context rcon = guess_run_context() if rcon.is_head_rank: from hedge.mesh.reader.gmsh import generate_gmsh mesh = generate_gmsh(GEOMETRY, 2, allow_internal_boundaries=True, force_dimension=2) print("%d elements" % len(mesh.elements)) mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() discr = rcon.make_discretization(mesh_data, order=4, debug=debug, default_scalar_type=dtype) from hedge.timestep.runge_kutta import LSRK4TimeStepper stepper = LSRK4TimeStepper(dtype=dtype) from hedge.visualization import VtkVisualizer if write_output: vis = VtkVisualizer(discr, rcon, "fld") source_center = 0 source_width = 0.05 source_omega = 3 import hedge.optemplate as sym sym_x = sym.nodes(2) sym_source_center_dist = sym_x - source_center from hedge.models.wave import StrongWaveOperator op = StrongWaveOperator(-1, discr.dimensions, source_f= sym.CFunction("sin")(source_omega*sym.ScalarParameter("t")) * sym.CFunction("exp")( -np.dot(sym_source_center_dist, sym_source_center_dist) / source_width**2), dirichlet_tag="boundary", neumann_tag=TAG_NONE, radiation_tag=TAG_NONE, flux_type=flux_type_arg ) from hedge.tools import join_fields fields = join_fields(discr.volume_zeros(dtype=dtype), [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)]) # diagnostics setup ------------------------------------------------------- from pytools.log import LogManager, \ add_general_quantities, \ add_simulation_quantities, \ add_run_info if write_output: log_file_name = "wiggly.dat" else: log_file_name = None logmgr = LogManager(log_file_name, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"]) # timestep loop ----------------------------------------------------------- rhs = op.bind(discr) try: from hedge.timestep import times_and_steps step_it = times_and_steps( final_time=4, logmgr=logmgr, max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields)) for step, t, dt in step_it: if step % 10 == 0 and write_output: visf = vis.make_file("fld-%04d" % step) vis.add_data(visf, [ ("u", fields[0]), ("v", fields[1:]), ], time=t, step=step) visf.close() fields = stepper(fields, t, dt, rhs) assert discr.norm(fields) < 1 assert fields[0].dtype == dtype finally: if write_output: vis.close() logmgr.close() discr.close() GEOMETRY = """ w = 1; dx = 0.2; ch_width = 0.2; rows = 4; Point(0) = {0,0,0}; Point(1) = {w,0,0}; bottom_line = newl; Line(bottom_line) = {0,1}; left_pts[] = { 0 }; right_pts[] = { 1 }; left_pts[] = { }; emb_lines[] = {}; For row In {1:rows} If (row % 2 == 0) // left rp = newp; Point(rp) = {w,dx*row, 0}; right_pts[] += {rp}; mp = newp; Point(mp) = {ch_width,dx*row, 0}; emb_line = newl; Line(emb_line) = {mp,rp}; emb_lines[] += {emb_line}; EndIf If (row % 2) // right lp = newp; Point(lp) = {0,dx*row, 0}; left_pts[] += {lp}; mp = newp; Point(mp) = { w-ch_width,dx*row, 0}; emb_line = newl; Line(emb_line) = {mp,lp}; emb_lines[] += {emb_line}; EndIf EndFor lep = newp; Point(lep) = {0,(rows+1)*dx,0}; rep = newp; Point(rep) = {w,(rows+1)*dx,0}; top_line = newl; Line(top_line) = {lep,rep}; left_pts[] += { lep }; right_pts[] += { rep }; lines[] = {bottom_line}; For i In {0:#right_pts[]-2} l = newl; Line(l) = {right_pts[i], right_pts[i+1]}; lines[] += {l}; EndFor lines[] += {-top_line}; For i In {#left_pts[]-1:0:-1} l = newl; Line(l) = {left_pts[i], left_pts[i-1]}; lines[] += {l}; EndFor Line Loop (1) = lines[]; Plane Surface (1) = {1}; Physical Surface(1) = {1}; For i In {0:#emb_lines[]-1} Line { emb_lines[i] } In Surface { 1 }; EndFor boundary_lines[] = {}; boundary_lines[] += lines[]; boundary_lines[] += emb_lines[]; Physical Line ("boundary") = boundary_lines[]; Mesh.CharacteristicLengthFactor = 0.4; """ if __name__ == "__main__": main()