Skip to content
test_cost_model.py 18 KiB
Newer Older
__copyright__ = """
Copyright (C) 2013 Andreas Kloeckner
Copyright (C) 2018 Matt Wala
Copyright (C) 2018 Hao Gao
"""

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

Alexandru Fikl's avatar
Alexandru Fikl committed
import logging
Hao Gao's avatar
Hao Gao committed
import time

import numpy as np
Alexandru Fikl's avatar
Alexandru Fikl committed
import pytest
from arraycontext import pytest_generate_tests_for_array_contexts
Hao Gao's avatar
Hao Gao committed

Andreas Klöckner's avatar
Andreas Klöckner committed
from boxtree.array_context import (
    PytestPyOpenCLArrayContextFactory,
    _acf,  # noqa: F401
)
Alexandru Fikl's avatar
Alexandru Fikl committed
from boxtree.cost import (
Andreas Klöckner's avatar
Andreas Klöckner committed
    FMMCostModel,
    _PythonFMMCostModel,
    make_pde_aware_translation_cost_model,
)
Hao Gao's avatar
Hao Gao committed
logger = logging.getLogger(__name__)

pytest_generate_tests = pytest_generate_tests_for_array_contexts([
    PytestPyOpenCLArrayContextFactory,
    ])
Hao Gao's avatar
Hao Gao committed

Hao Gao's avatar
Hao Gao committed
@pytest.mark.opencl
@pytest.mark.parametrize(
    ("nsources", "ntargets", "dims", "dtype"), [
        (50000, 50000, 3, np.float64)
Hao Gao's avatar
Hao Gao committed
    ]
)
def test_compare_cl_and_py_cost_model(actx_factory, nsources, ntargets, dims, dtype):
    actx = actx_factory()
Hao Gao's avatar
Hao Gao committed

    # {{{ Generate sources, targets and target_radii

    from boxtree.tools import make_normal_particle_array as p_normal
    sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
    targets = p_normal(actx.queue, ntargets, dims, dtype, seed=18)
Hao Gao's avatar
Hao Gao committed

    rng = np.random.default_rng(22)
    target_radii = rng.uniform(0.0, 0.05, (ntargets,)).astype(dtype)
Hao Gao's avatar
Hao Gao committed

    # }}}

    # {{{ Generate tree and traversal

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
Hao Gao's avatar
Hao Gao committed
    tree, _ = tb(
        actx.queue, sources, targets=targets, target_radii=target_radii,
        stick_out_factor=0.15, max_particles_in_box=30, debug=True
Hao Gao's avatar
Hao Gao committed
    )

    from boxtree.traversal import FMMTraversalBuilder
    tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=2)
    trav_dev, _ = tg(actx.queue, tree, debug=True)
    trav = trav_dev.get(queue=actx.queue)
Hao Gao's avatar
Hao Gao committed

    # }}}

    # {{{ Construct cost models

    cl_cost_model = FMMCostModel(None)
    python_cost_model = _PythonFMMCostModel(None)
    constant_one_params = cl_cost_model.get_unit_calibration_params().copy()
Hao Gao's avatar
Hao Gao committed
    for ilevel in range(trav.tree.nlevels):
        constant_one_params[f"p_fmm_lev{ilevel}"] = 10
    xlat_cost = make_pde_aware_translation_cost_model(dims, trav.tree.nlevels)
Hao Gao's avatar
Hao Gao committed

Hao Gao's avatar
Hao Gao committed
    # {{{ Test process_form_multipoles

    from pymbolic import evaluate
Hao Gao's avatar
Hao Gao committed
    nlevels = trav.tree.nlevels
    p2m_cost = np.zeros(nlevels, dtype=np.float64)
    for ilevel in range(nlevels):
        p2m_cost[ilevel] = evaluate(
            xlat_cost.p2m(ilevel),
            context=constant_one_params
        )
    p2m_cost_dev = actx.from_numpy(p2m_cost)
    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()

    cl_form_multipoles = cl_cost_model.process_form_multipoles(
        actx.queue, trav_dev, p2m_cost_dev
    actx.queue.finish()
    logger.info("OpenCL time for process_form_multipoles: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()

    python_form_multipoles = python_cost_model.process_form_multipoles(
        actx.queue, trav, p2m_cost
    logger.info("Python time for process_form_multipoles: %gs",
            time.time() - start_time)
    assert np.array_equal(actx.to_numpy(cl_form_multipoles), python_form_multipoles)
    # {{{ Test process_coarsen_multipoles

    m2m_cost = np.zeros(nlevels - 1, dtype=np.float64)
    for target_level in range(nlevels - 1):
        m2m_cost[target_level] = evaluate(
            xlat_cost.m2m(target_level + 1, target_level),
            context=constant_one_params
        )
    m2m_cost_dev = actx.from_numpy(m2m_cost)
    actx.queue.finish()
    start_time = time.time()
    cl_coarsen_multipoles = cl_cost_model.process_coarsen_multipoles(
        actx.queue, trav_dev, m2m_cost_dev
    actx.queue.finish()
    logger.info("OpenCL time for coarsen_multipoles: %gs",
            time.time() - start_time)

    start_time = time.time()

    python_coarsen_multipoles = python_cost_model.process_coarsen_multipoles(
        actx.queue, trav, m2m_cost
    logger.info("Python time for coarsen_multipoles: %gs",
            time.time() - start_time)

    assert cl_coarsen_multipoles == python_coarsen_multipoles

    # }}}

    # {{{ Test process_direct
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()
    cl_ndirect_sources_per_target_box = \
        cl_cost_model.get_ndirect_sources_per_target_box(actx.queue, trav_dev)

    cl_direct = cl_cost_model.process_direct(
        actx.queue, trav_dev, cl_ndirect_sources_per_target_box, 5.0
    actx.queue.finish()
    logger.info("OpenCL time for process_direct: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

Hao Gao's avatar
Hao Gao committed
    start_time = time.time()
    python_ndirect_sources_per_target_box = \
        python_cost_model.get_ndirect_sources_per_target_box(actx.queue, trav)

    python_direct = python_cost_model.process_direct(
        actx.queue, trav, python_ndirect_sources_per_target_box, 5.0
    logger.info("Python time for process_direct: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert np.array_equal(actx.to_numpy(cl_direct), python_direct)
Hao Gao's avatar
Hao Gao committed

Hao Gao's avatar
Hao Gao committed
    # }}}

Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    cl_direct_aggregate = cl_cost_model.aggregate_over_boxes(cl_direct)
    actx.queue.finish()
    logger.info("OpenCL time for aggregate_over_boxes: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    python_direct_aggregate = python_cost_model.aggregate_over_boxes(python_direct)
    logger.info("Python time for aggregate_over_boxes: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert cl_direct_aggregate == python_direct_aggregate
Hao Gao's avatar
Hao Gao committed

    # }}}

Hao Gao's avatar
Hao Gao committed
    # {{{ Test process_list2

    nlevels = trav.tree.nlevels
    m2l_cost = np.zeros(nlevels, dtype=np.float64)
    for ilevel in range(nlevels):
        m2l_cost[ilevel] = evaluate(
            xlat_cost.m2l(ilevel, ilevel),
            context=constant_one_params
        )
    m2l_cost_dev = actx.from_numpy(m2l_cost)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()

    cl_m2l_cost = cl_cost_model.process_list2(actx.queue, trav_dev, m2l_cost_dev)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
    logger.info("OpenCL time for process_list2: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    python_m2l_cost = python_cost_model.process_list2(actx.queue, trav, m2l_cost)
    logger.info("Python time for process_list2: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert np.array_equal(actx.to_numpy(cl_m2l_cost), python_m2l_cost)
Hao Gao's avatar
Hao Gao committed

    # }}}

Hao Gao's avatar
Hao Gao committed
    # {{{ Test process_list 3

    m2p_cost = np.zeros(nlevels, dtype=np.float64)
    for ilevel in range(nlevels):
        m2p_cost[ilevel] = evaluate(
            xlat_cost.m2p(ilevel),
            context=constant_one_params
        )
    m2p_cost_dev = actx.from_numpy(m2p_cost)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()

    cl_m2p_cost = cl_cost_model.process_list3(actx.queue, trav_dev, m2p_cost_dev)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
    logger.info("OpenCL time for process_list3: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    python_m2p_cost = python_cost_model.process_list3(actx.queue, trav, m2p_cost)
    logger.info("Python time for process_list3: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert np.array_equal(actx.to_numpy(cl_m2p_cost), python_m2p_cost)
Hao Gao's avatar
Hao Gao committed

    # }}}

Hao Gao's avatar
Hao Gao committed
    # {{{ Test process_list4
Hao Gao's avatar
Hao Gao committed

    p2l_cost = np.zeros(nlevels, dtype=np.float64)
    for ilevel in range(nlevels):
        p2l_cost[ilevel] = evaluate(
            xlat_cost.p2l(ilevel),
            context=constant_one_params
        )
    p2l_cost_dev = actx.from_numpy(p2l_cost)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()

    cl_p2l_cost = cl_cost_model.process_list4(actx.queue, trav_dev, p2l_cost_dev)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
    logger.info("OpenCL time for process_list4: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    python_p2l_cost = python_cost_model.process_list4(actx.queue, trav, p2l_cost)
    logger.info("Python time for process_list4: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert np.array_equal(actx.to_numpy(cl_p2l_cost), python_p2l_cost)
Hao Gao's avatar
Hao Gao committed

    # }}}

Hao Gao's avatar
Hao Gao committed
    # {{{ Test process_refine_locals

    l2l_cost = np.zeros(nlevels - 1, dtype=np.float64)
    for ilevel in range(nlevels - 1):
        l2l_cost[ilevel] = evaluate(
            xlat_cost.l2l(ilevel, ilevel + 1),
            context=constant_one_params
        )
    l2l_cost_dev = actx.from_numpy(l2l_cost)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()

    cl_refine_locals_cost = cl_cost_model.process_refine_locals(
        actx.queue, trav_dev, l2l_cost_dev
    actx.queue.finish()
    logger.info("OpenCL time for refine_locals: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    python_refine_locals_cost = python_cost_model.process_refine_locals(
        actx.queue, trav, l2l_cost
Hao Gao's avatar
Hao Gao committed
    )
    logger.info("Python time for refine_locals: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert cl_refine_locals_cost == python_refine_locals_cost

    # }}}

Hao Gao's avatar
Hao Gao committed
    # {{{ Test process_eval_locals

    l2p_cost = np.zeros(nlevels, dtype=np.float64)
    for ilevel in range(nlevels):
        l2p_cost[ilevel] = evaluate(
            xlat_cost.l2p(ilevel),
            context=constant_one_params
        )
    l2p_cost_dev = actx.from_numpy(l2p_cost)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
Hao Gao's avatar
Hao Gao committed
    start_time = time.time()

    cl_l2p_cost = cl_cost_model.process_eval_locals(
            actx.queue, trav_dev, l2p_cost_dev)
Hao Gao's avatar
Hao Gao committed

    actx.queue.finish()
    logger.info("OpenCL time for process_eval_locals: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    start_time = time.time()
    python_l2p_cost = python_cost_model.process_eval_locals(
            actx.queue, trav, l2p_cost)
    logger.info("Python time for process_eval_locals: %gs",
            time.time() - start_time)
Hao Gao's avatar
Hao Gao committed

    assert np.array_equal(actx.to_numpy(cl_l2p_cost), python_l2p_cost)
Hao Gao's avatar
Hao Gao committed

@pytest.mark.opencl
def test_estimate_calibration_params(actx_factory):
    from boxtree.pyfmmlib_integration import (
Andreas Klöckner's avatar
Andreas Klöckner committed
        FMMLibExpansionWrangler,
        FMMLibTreeIndependentDataForWrangler,
        Kernel,
    )
    rng = np.random.default_rng(seed=42)

    nsources_list = [1000, 2000, 3000, 4000]
    ntargets_list = [1000, 2000, 3000, 4000]
    dims = 3
    dtype = np.float64

    actx = actx_factory()

    traversals = []
    traversals_dev = []
    level_to_orders = []
    timing_results = []

Hao Gao's avatar
Hao Gao committed
    def fmm_level_to_order(tree, ilevel):
Alexandru Fikl's avatar
Alexandru Fikl committed
    for nsources, ntargets in zip(nsources_list, ntargets_list, strict=True):
        # {{{ Generate sources, targets and target_radii

        from boxtree.tools import make_normal_particle_array as p_normal
        sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
        targets = p_normal(actx.queue, ntargets, dims, dtype, seed=18)
        rng = np.random.default_rng(22)
        target_radii = rng.uniform(0.0, 0.05, (ntargets,)).astype(dtype)

        # }}}

        # {{{ Generate tree and traversal

        from boxtree import TreeBuilder
        tb = TreeBuilder(actx.context)
        tree, _ = tb(
            actx.queue, sources, targets=targets, target_radii=target_radii,
            stick_out_factor=0.15, max_particles_in_box=30, debug=True
        )

        from boxtree.traversal import FMMTraversalBuilder
        tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=2)
        trav_dev, _ = tg(actx.queue, tree, debug=True)
        trav = trav_dev.get(queue=actx.queue)

        traversals.append(trav)
        traversals_dev.append(trav_dev)

        # }}}

        tree_indep = FMMLibTreeIndependentDataForWrangler(
                trav.tree.dimensions, Kernel.LAPLACE)
        wrangler = FMMLibExpansionWrangler(tree_indep, trav,
Hao Gao's avatar
Hao Gao committed
                fmm_level_to_order=fmm_level_to_order)
        level_to_orders.append(wrangler.level_orders)

        timing_data = {}
        from boxtree.fmm import drive_fmm
        src_weights = rng.random(size=tree.nsources, dtype=tree.coord_dtype)
        drive_fmm(wrangler, (src_weights,), timing_data=timing_data)

        timing_results.append(timing_data)

    time_field_name = "process_elapsed"
    def test_params_sanity(test_params):
        param_names = ["c_p2m", "c_m2m", "c_p2p", "c_m2l", "c_m2p", "c_p2l", "c_l2l",
                       "c_l2p"]
        for name in param_names:
            assert isinstance(test_params[name], np.float64)

    def test_params_equal(test_params1, test_params2):
        param_names = ["c_p2m", "c_m2m", "c_p2p", "c_m2l", "c_m2p", "c_p2l", "c_l2l",
                       "c_l2p"]
        for name in param_names:
            assert test_params1[name] == test_params2[name]

    python_cost_model = _PythonFMMCostModel(make_pde_aware_translation_cost_model)

    python_model_results = []

    for icase in range(len(traversals)-1):
        traversal = traversals[icase]
        level_to_order = level_to_orders[icase]

        python_model_results.append(python_cost_model.cost_per_stage(
            actx.queue, traversal, level_to_order,
            _PythonFMMCostModel.get_unit_calibration_params(),
    python_params = python_cost_model.estimate_calibration_params(
        python_model_results, timing_results[:-1], time_field_name=time_field_name
    test_params_sanity(python_params)

    cl_cost_model = FMMCostModel(make_pde_aware_translation_cost_model)

    cl_model_results = []

    for icase in range(len(traversals_dev)-1):
        traversal = traversals_dev[icase]
        level_to_order = level_to_orders[icase]

        cl_model_results.append(cl_cost_model.cost_per_stage(
            actx.queue, traversal, level_to_order,
            FMMCostModel.get_unit_calibration_params(),
    cl_params = cl_cost_model.estimate_calibration_params(
        cl_model_results, timing_results[:-1], time_field_name=time_field_name
    test_params_sanity(cl_params)
    test_params_equal(cl_params, python_params)
# }}}


# {{{ test_cost_model_op_counts_agree_with_constantone_wrangler
class OpCountingTranslationCostModel:
    """A translation cost model which assigns at cost of 1 to each operation."""

    def __init__(self, dim, nlevels):
        pass

    @staticmethod
    def direct():
        return 1

    @staticmethod
    def p2l(level):
        return 1

    l2p = p2l
    p2m = p2l
    m2p = p2l

    @staticmethod
    def m2m(src_level, tgt_level):
        return 1

    l2l = m2m
    m2l = m2m


@pytest.mark.opencl
@pytest.mark.parametrize(
    ("nsources", "ntargets", "dims", "dtype"), [
        (5000, 5000, 3, np.float64)
    ]
)
def test_cost_model_op_counts_agree_with_constantone_wrangler(
        actx_factory, nsources, ntargets, dims, dtype):
    actx = actx_factory()

    from boxtree.tools import make_normal_particle_array as p_normal
    sources = p_normal(actx.queue, nsources, dims, dtype, seed=16)
    targets = p_normal(actx.queue, ntargets, dims, dtype, seed=19)
    rng = np.random.default_rng(20)
    target_radii = rng.uniform(0, 0.04, (ntargets,)).astype(dtype)

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
        actx.queue, sources, targets=targets, target_radii=target_radii,
        stick_out_factor=0.15, max_particles_in_box=30, debug=True
    )

    from boxtree.traversal import FMMTraversalBuilder
    tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=2)
    trav_dev, _ = tg(actx.queue, tree, debug=True)
    trav = trav_dev.get(queue=actx.queue)
Andreas Klöckner's avatar
Andreas Klöckner committed
        ConstantOneExpansionWrangler,
        ConstantOneTreeIndependentDataForWrangler,
    )
    tree_indep = ConstantOneTreeIndependentDataForWrangler()
    wrangler = ConstantOneExpansionWrangler(tree_indep, trav)

    timing_data = {}
    from boxtree.fmm import drive_fmm
    src_weights = rng.random(size=tree.nsources, dtype=tree.coord_dtype)
    drive_fmm(wrangler, (src_weights,), timing_data=timing_data)
    cost_model = FMMCostModel(
        translation_cost_model_factory=OpCountingTranslationCostModel
    )

    level_to_order = np.array([1 for _ in range(tree.nlevels)])
    modeled_time = cost_model.cost_per_stage(
        actx.queue, trav_dev, level_to_order,
        FMMCostModel.get_unit_calibration_params(),

    mismatches = []
    for stage in timing_data:
        if timing_data[stage]["ops_elapsed"] != modeled_time[stage]:
            mismatches.append(
                    (stage, timing_data[stage]["ops_elapsed"], modeled_time[stage]))

    assert not mismatches, "\n".join(str(s) for s in mismatches)

    # {{{ Test per-box cost

    total_cost = 0.0
    for stage in timing_data:
        total_cost += timing_data[stage]["ops_elapsed"]

    per_box_cost = cost_model.cost_per_box(
        actx.queue, trav_dev, level_to_order,
        FMMCostModel.get_unit_calibration_params(),
    total_aggregate_cost = cost_model.aggregate_over_boxes(per_box_cost)
    assert total_cost == (
            total_aggregate_cost
            + modeled_time["coarsen_multipoles"]
            + modeled_time["refine_locals"]
    )

    # }}}

# You can test individual routines by typing
# $ python test_cost_model.py 'test_routine(_acf)'
Hao Gao's avatar
Hao Gao committed

if __name__ == "__main__":
    if len(sys.argv) > 1:
        exec(sys.argv[1])
    else:
        from pytest import main
        main([__file__])