Newer
Older
Andreas Klöckner
committed
from __future__ import division, absolute_import
__copyright__ = """
Copyright (C) 2013 Andreas Kloeckner
Copyright (C) 2018 Matt Wala
Copyright (C) 2018 Hao Gao
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import pyopencl as cl
import time
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.cost import FMMCostModel, _PythonFMMCostModel
Andreas Klöckner
committed
from boxtree.cost import make_pde_aware_translation_cost_model
import logging
import os
logging.basicConfig(level=os.environ.get("LOGLEVEL", "WARNING"))
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
SUPPORTS_PROCESS_TIME = (sys.version_info >= (3, 3))
Andreas Klöckner
committed
# {{{ test_compare_cl_and_py_cost_model
@pytest.mark.opencl
@pytest.mark.parametrize(
("nsources", "ntargets", "dims", "dtype"), [
def test_compare_cl_and_py_cost_model(ctx_factory, nsources, ntargets, dims, dtype):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
# {{{ Generate sources, targets and target_radii
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=18)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=22)
target_radii = rng.uniform(
queue, ntargets, a=0, b=0.05, dtype=dtype
).get()
# }}}
# {{{ Generate tree and traversal
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
Andreas Klöckner
committed
python_cost_model = _PythonFMMCostModel(None)
constant_one_params = cl_cost_model.get_unit_calibration_params().copy()
constant_one_params["p_fmm_lev%d" % ilevel] = 10
Andreas Klöckner
committed
xlat_cost = make_pde_aware_translation_cost_model(dims, trav.tree.nlevels)
# {{{ Test process_form_multipoles
nlevels = trav.tree.nlevels
p2m_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
p2m_cost[ilevel] = evaluate(
xlat_cost.p2m(ilevel),
context=constant_one_params
)
p2m_cost_dev = cl.array.to_device(queue, p2m_cost)
queue.finish()
start_time = time.time()
cl_form_multipoles = cl_cost_model.process_form_multipoles(
)
queue.finish()
logger.info("OpenCL time for process_form_multipoles: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_form_multipoles = python_cost_model.process_form_multipoles(
)
logger.info("Python time for process_form_multipoles: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_form_multipoles.get(), python_form_multipoles)
# {{{ Test process_coarsen_multipoles
m2m_cost = np.zeros(nlevels - 1, dtype=np.float64)
for target_level in range(nlevels - 1):
m2m_cost[target_level] = evaluate(
xlat_cost.m2m(target_level + 1, target_level),
context=constant_one_params
)
m2m_cost_dev = cl.array.to_device(queue, m2m_cost)
queue.finish()
start_time = time.time()
cl_coarsen_multipoles = cl_cost_model.process_coarsen_multipoles(
)
queue.finish()
logger.info("OpenCL time for coarsen_multipoles: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_coarsen_multipoles = python_cost_model.process_coarsen_multipoles(
)
logger.info("Python time for coarsen_multipoles: {0}".format(
str(time.time() - start_time)
))
assert cl_coarsen_multipoles == python_coarsen_multipoles
# }}}
cl_ndirect_sources_per_target_box = \
cl_cost_model.get_ndirect_sources_per_target_box(queue, trav_dev)
cl_direct = cl_cost_model.process_direct(
queue, trav_dev, cl_ndirect_sources_per_target_box, 5.0
python_ndirect_sources_per_target_box = \
python_cost_model.get_ndirect_sources_per_target_box(queue, trav)
python_direct = python_cost_model.process_direct(
queue, trav, python_ndirect_sources_per_target_box, 5.0
assert np.array_equal(cl_direct.get(), python_direct)
# {{{ Test aggregate_over_boxes
cl_direct_aggregate = cl_cost_model.aggregate_over_boxes(cl_direct)
logger.info("OpenCL time for aggregate_over_boxes: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_direct_aggregate = python_cost_model.aggregate_over_boxes(python_direct)
logger.info("Python time for aggregate_over_boxes: {0}".format(
assert cl_direct_aggregate == python_direct_aggregate
# {{{ Test process_list2
nlevels = trav.tree.nlevels
m2l_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
m2l_cost[ilevel] = evaluate(
xlat_cost.m2l(ilevel, ilevel),
context=constant_one_params
)
m2l_cost_dev = cl.array.to_device(queue, m2l_cost)
queue.finish()
start_time = time.time()
cl_m2l_cost = cl_cost_model.process_list2(queue, trav_dev, m2l_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list2: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_m2l_cost = python_cost_model.process_list2(queue, trav, m2l_cost)
logger.info("Python time for process_list2: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_m2l_cost.get(), python_m2l_cost)
# {{{ Test process_list 3
m2p_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
m2p_cost[ilevel] = evaluate(
xlat_cost.m2p(ilevel),
context=constant_one_params
)
m2p_cost_dev = cl.array.to_device(queue, m2p_cost)
queue.finish()
start_time = time.time()
cl_m2p_cost = cl_cost_model.process_list3(queue, trav_dev, m2p_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list3: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_m2p_cost = python_cost_model.process_list3(queue, trav, m2p_cost)
logger.info("Python time for process_list3: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_m2p_cost.get(), python_m2p_cost)
p2l_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
p2l_cost[ilevel] = evaluate(
xlat_cost.p2l(ilevel),
context=constant_one_params
)
p2l_cost_dev = cl.array.to_device(queue, p2l_cost)
queue.finish()
start_time = time.time()
cl_p2l_cost = cl_cost_model.process_list4(queue, trav_dev, p2l_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list4: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_p2l_cost = python_cost_model.process_list4(queue, trav, p2l_cost)
logger.info("Python time for process_list4: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_p2l_cost.get(), python_p2l_cost)
# {{{ Test process_refine_locals
l2l_cost = np.zeros(nlevels - 1, dtype=np.float64)
for ilevel in range(nlevels - 1):
l2l_cost[ilevel] = evaluate(
xlat_cost.l2l(ilevel, ilevel + 1),
context=constant_one_params
)
l2l_cost_dev = cl.array.to_device(queue, l2l_cost)
queue.finish()
start_time = time.time()
cl_refine_locals_cost = cl_cost_model.process_refine_locals(
)
queue.finish()
logger.info("OpenCL time for refine_locals: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_refine_locals_cost = python_cost_model.process_refine_locals(
)
logger.info("Python time for refine_locals: {0}".format(
str(time.time() - start_time)
))
assert cl_refine_locals_cost == python_refine_locals_cost
# }}}
# {{{ Test process_eval_locals
l2p_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
l2p_cost[ilevel] = evaluate(
xlat_cost.l2p(ilevel),
context=constant_one_params
)
l2p_cost_dev = cl.array.to_device(queue, l2p_cost)
queue.finish()
start_time = time.time()
cl_l2p_cost = cl_cost_model.process_eval_locals(queue, trav_dev, l2p_cost_dev)
queue.finish()
logger.info("OpenCL time for process_eval_locals: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_l2p_cost = python_cost_model.process_eval_locals(queue, trav, l2p_cost)
logger.info("Python time for process_eval_locals: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_l2p_cost.get(), python_l2p_cost)
Andreas Klöckner
committed
# }}}
# {{{ test_estimate_calibration_params
@pytest.mark.opencl
def test_estimate_calibration_params(ctx_factory):
from boxtree.pyfmmlib_integration import FMMLibExpansionWrangler
nsources_list = [1000, 2000, 3000, 4000]
ntargets_list = [1000, 2000, 3000, 4000]
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
dims = 3
dtype = np.float64
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
traversals = []
traversals_dev = []
level_to_orders = []
timing_results = []
def fmm_level_to_nterms(tree, ilevel):
return 10
for nsources, ntargets in zip(nsources_list, ntargets_list):
# {{{ Generate sources, targets and target_radii
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=18)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=22)
target_radii = rng.uniform(
queue, ntargets, a=0, b=0.05, dtype=dtype
).get()
# }}}
# {{{ Generate tree and traversal
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
traversals.append(trav)
traversals_dev.append(trav_dev)
# }}}
wrangler = FMMLibExpansionWrangler(trav.tree, 0, fmm_level_to_nterms)
level_to_orders.append(wrangler.level_nterms)
timing_data = {}
from boxtree.fmm import drive_fmm
src_weights = np.random.rand(tree.nsources).astype(tree.coord_dtype)
drive_fmm(trav, wrangler, (src_weights,), timing_data=timing_data)
timing_results.append(timing_data)
time_field_name = "process_elapsed"
time_field_name = "wall_elapsed"
def test_params_sanity(test_params):
param_names = ["c_p2m", "c_m2m", "c_p2p", "c_m2l", "c_m2p", "c_p2l", "c_l2l",
"c_l2p"]
for name in param_names:
assert isinstance(test_params[name], np.float64)
def test_params_equal(test_params1, test_params2):
param_names = ["c_p2m", "c_m2m", "c_p2p", "c_m2l", "c_m2p", "c_p2l", "c_l2l",
"c_l2p"]
for name in param_names:
assert test_params1[name] == test_params2[name]
Andreas Klöckner
committed
python_cost_model = _PythonFMMCostModel(make_pde_aware_translation_cost_model)
python_model_results = []
for icase in range(len(traversals)-1):
traversal = traversals[icase]
level_to_order = level_to_orders[icase]
python_model_results.append(python_cost_model.cost_per_stage(
Andreas Klöckner
committed
_PythonFMMCostModel.get_unit_calibration_params(),
python_params = python_cost_model.estimate_calibration_params(
python_model_results, timing_results[:-1], time_field_name=time_field_name
test_params_sanity(python_params)
cl_cost_model = FMMCostModel(make_pde_aware_translation_cost_model)
cl_model_results = []
for icase in range(len(traversals_dev)-1):
traversal = traversals_dev[icase]
level_to_order = level_to_orders[icase]
cl_model_results.append(cl_cost_model.cost_per_stage(
FMMCostModel.get_unit_calibration_params(),
cl_params = cl_cost_model.estimate_calibration_params(
cl_model_results, timing_results[:-1], time_field_name=time_field_name
test_params_equal(cl_params, python_params)
Andreas Klöckner
committed
# }}}
# {{{ test_cost_model_op_counts_agree_with_constantone_wrangler
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
class OpCountingTranslationCostModel(object):
"""A translation cost model which assigns at cost of 1 to each operation."""
def __init__(self, dim, nlevels):
pass
@staticmethod
def direct():
return 1
@staticmethod
def p2l(level):
return 1
l2p = p2l
p2m = p2l
m2p = p2l
@staticmethod
def m2m(src_level, tgt_level):
return 1
l2l = m2m
m2l = m2m
@pytest.mark.opencl
@pytest.mark.parametrize(
("nsources", "ntargets", "dims", "dtype"), [
(5000, 5000, 3, np.float64)
]
)
Andreas Klöckner
committed
def test_cost_model_op_counts_agree_with_constantone_wrangler(
ctx_factory, nsources, ntargets, dims, dtype):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=16)
targets = p_normal(queue, ntargets, dims, dtype, seed=19)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=20)
target_radii = rng.uniform(queue, ntargets, a=0, b=0.04, dtype=dtype).get()
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
from boxtree.tools import ConstantOneExpansionWrangler
wrangler = ConstantOneExpansionWrangler(trav.tree)
timing_data = {}
from boxtree.fmm import drive_fmm
src_weights = np.random.rand(tree.nsources).astype(tree.coord_dtype)
drive_fmm(trav, wrangler, (src_weights,), timing_data=timing_data)
translation_cost_model_factory=OpCountingTranslationCostModel
)
level_to_order = np.array([1 for _ in range(tree.nlevels)])
modeled_time = cost_model.cost_per_stage(
FMMCostModel.get_unit_calibration_params(),
mismatches = []
for stage in timing_data:
if timing_data[stage]["ops_elapsed"] != modeled_time[stage]:
mismatches.append(
(stage, timing_data[stage]["ops_elapsed"], modeled_time[stage]))
assert not mismatches, "\n".join(str(s) for s in mismatches)
total_cost = 0.0
for stage in timing_data:
total_cost += timing_data[stage]["ops_elapsed"]
per_box_cost = cost_model.cost_per_box(
FMMCostModel.get_unit_calibration_params(),
total_aggregate_cost = cost_model.aggregate_over_boxes(per_box_cost)
assert total_cost == (
total_aggregate_cost
+ modeled_time["coarsen_multipoles"]
+ modeled_time["refine_locals"]
)
# }}}
Andreas Klöckner
committed
# }}}
# You can test individual routines by typing
# $ python test_cost_model.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from pytest import main
main([__file__])
Andreas Klöckner
committed
# vim: foldmethod=marker