Newer
Older
import numpy as np
import pyopencl as cl
import time
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.cost import CLFMMCostModel, PythonFMMCostModel
from boxtree.cost import pde_aware_translation_cost_model
import logging
import os
logging.basicConfig(level=os.environ.get("LOGLEVEL", "WARNING"))
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@pytest.mark.opencl
@pytest.mark.parametrize(
("nsources", "ntargets", "dims", "dtype"), [
def test_compare_cl_and_py_cost_model(ctx_factory, nsources, ntargets, dims, dtype):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
# {{{ Generate sources, targets and target_radii
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=18)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=22)
target_radii = rng.uniform(
queue, ntargets, a=0, b=0.05, dtype=dtype
).get()
# }}}
# {{{ Generate tree and traversal
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
cl_cost_model = CLFMMCostModel(queue, None, None)
python_cost_model = PythonFMMCostModel(None, None)
constant_one_params = cl_cost_model.get_constantone_calibration_params().copy()
constant_one_params["p_fmm_lev%d" % ilevel] = 10
xlat_cost = pde_aware_translation_cost_model(dims, trav.tree.nlevels)
# }}}
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# {{{ Test process_form_multipoles
nlevels = trav.tree.nlevels
p2m_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
p2m_cost[ilevel] = evaluate(
xlat_cost.p2m(ilevel),
context=constant_one_params
)
p2m_cost_dev = cl.array.to_device(queue, p2m_cost)
queue.finish()
start_time = time.time()
cl_form_multipoles = cl_cost_model.process_form_multipoles(
trav_dev, p2m_cost_dev
)
queue.finish()
logger.info("OpenCL time for process_form_multipoles: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_form_multipoles = python_cost_model.process_form_multipoles(
trav, p2m_cost
)
logger.info("Python time for process_form_multipoles: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_form_multipoles.get(), python_form_multipoles)
# {{{ Test process_coarsen_multipoles
m2m_cost = np.zeros(nlevels - 1, dtype=np.float64)
for target_level in range(nlevels - 1):
m2m_cost[target_level] = evaluate(
xlat_cost.m2m(target_level + 1, target_level),
context=constant_one_params
)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
m2m_cost_dev = cl.array.to_device(queue, m2m_cost)
queue.finish()
start_time = time.time()
cl_coarsen_multipoles = cl_cost_model.process_coarsen_multipoles(
trav_dev, m2m_cost_dev
)
queue.finish()
logger.info("OpenCL time for coarsen_multipoles: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_coarsen_multipoles = python_cost_model.process_coarsen_multipoles(
trav, m2m_cost
)
logger.info("Python time for coarsen_multipoles: {0}".format(
str(time.time() - start_time)
))
assert cl_coarsen_multipoles == python_coarsen_multipoles
# }}}
cl_ndirect_sources_per_target_box = \
cl_cost_model.get_ndirect_sources_per_target_box(trav_dev)
cl_direct = cl_cost_model.process_direct(
trav_dev, cl_ndirect_sources_per_target_box, 5.0
)
python_ndirect_sources_per_target_box = \
python_cost_model.get_ndirect_sources_per_target_box(trav)
python_direct = python_cost_model.process_direct(
trav, python_ndirect_sources_per_target_box, 5.0
)
assert np.array_equal(cl_direct.get(), python_direct)
cl_direct_aggregate = cl_cost_model.aggregate(cl_direct)
logger.info("OpenCL time for aggregate: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_direct_aggregate = python_cost_model.aggregate(python_direct)
logger.info("Python time for aggregate: {0}".format(
assert cl_direct_aggregate == python_direct_aggregate
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# {{{ Test process_list2
nlevels = trav.tree.nlevels
m2l_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
m2l_cost[ilevel] = evaluate(
xlat_cost.m2l(ilevel, ilevel),
context=constant_one_params
)
m2l_cost_dev = cl.array.to_device(queue, m2l_cost)
queue.finish()
start_time = time.time()
cl_m2l_cost = cl_cost_model.process_list2(trav_dev, m2l_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list2: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_m2l_cost = python_cost_model.process_list2(trav, m2l_cost)
logger.info("Python time for process_list2: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_m2l_cost.get(), python_m2l_cost)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# {{{ Test process_list 3
m2p_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
m2p_cost[ilevel] = evaluate(
xlat_cost.m2p(ilevel),
context=constant_one_params
)
m2p_cost_dev = cl.array.to_device(queue, m2p_cost)
queue.finish()
start_time = time.time()
cl_m2p_cost = cl_cost_model.process_list3(trav_dev, m2p_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list3: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_m2p_cost = python_cost_model.process_list3(trav, m2p_cost)
logger.info("Python time for process_list3: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_m2p_cost.get(), python_m2p_cost)
p2l_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
p2l_cost[ilevel] = evaluate(
xlat_cost.p2l(ilevel),
context=constant_one_params
)
p2l_cost_dev = cl.array.to_device(queue, p2l_cost)
queue.finish()
start_time = time.time()
cl_p2l_cost = cl_cost_model.process_list4(trav_dev, p2l_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list4: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_p2l_cost = python_cost_model.process_list4(trav, p2l_cost)
logger.info("Python time for process_list4: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_p2l_cost.get(), python_p2l_cost)
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# {{{ Test process_refine_locals
l2l_cost = np.zeros(nlevels - 1, dtype=np.float64)
for ilevel in range(nlevels - 1):
l2l_cost[ilevel] = evaluate(
xlat_cost.l2l(ilevel, ilevel + 1),
context=constant_one_params
)
l2l_cost_dev = cl.array.to_device(queue, l2l_cost)
queue.finish()
start_time = time.time()
cl_refine_locals_cost = cl_cost_model.process_refine_locals(
trav_dev, l2l_cost_dev
)
queue.finish()
logger.info("OpenCL time for refine_locals: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_refine_locals_cost = python_cost_model.process_refine_locals(
trav, l2l_cost
)
logger.info("Python time for refine_locals: {0}".format(
str(time.time() - start_time)
))
assert cl_refine_locals_cost == python_refine_locals_cost
# }}}
# {{{ Test process_eval_locals
l2p_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
l2p_cost[ilevel] = evaluate(
xlat_cost.l2p(ilevel),
context=constant_one_params
)
l2p_cost_dev = cl.array.to_device(queue, l2p_cost)
queue.finish()
start_time = time.time()
cl_l2p_cost = cl_cost_model.process_eval_locals(trav_dev, l2p_cost_dev)
queue.finish()
logger.info("OpenCL time for process_eval_locals: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_l2p_cost = python_cost_model.process_eval_locals(trav, l2p_cost)
logger.info("Python time for process_eval_locals: {0}".format(
str(time.time() - start_time)
))
assert np.array_equal(cl_l2p_cost.get(), python_l2p_cost)
@pytest.mark.opencl
def test_estimate_calibration_params(ctx_factory):
from boxtree.pyfmmlib_integration import FMMLibExpansionWrangler
nsources_list = [1000, 2000, 3000, 4000]
ntargets_list = [1000, 2000, 3000, 4000]
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
dims = 3
dtype = np.float64
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
traversals = []
traversals_dev = []
level_to_orders = []
timing_results = []
def fmm_level_to_nterms(tree, ilevel):
return 10
for nsources, ntargets in zip(nsources_list, ntargets_list):
# {{{ Generate sources, targets and target_radii
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=18)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=22)
target_radii = rng.uniform(
queue, ntargets, a=0, b=0.05, dtype=dtype
).get()
# }}}
# {{{ Generate tree and traversal
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
traversals.append(trav)
traversals_dev.append(trav_dev)
# }}}
wrangler = FMMLibExpansionWrangler(trav.tree, 0, fmm_level_to_nterms)
level_to_orders.append(wrangler.level_nterms)
timing_data = {}
from boxtree.fmm import drive_fmm
src_weights = np.random.rand(tree.nsources).astype(tree.coord_dtype)
drive_fmm(trav, wrangler, src_weights, timing_data=timing_data)
timing_results.append(timing_data)
if sys.version_info >= (3, 0):
wall_time = False
else:
wall_time = True
def test_params_sanity(test_params):
param_names = ["c_p2m", "c_m2m", "c_p2p", "c_m2l", "c_m2p", "c_p2l", "c_l2l",
"c_l2p"]
for name in param_names:
assert isinstance(test_params[name], np.float64)
def test_params_equal(test_params1, test_params2):
param_names = ["c_p2m", "c_m2m", "c_p2p", "c_m2l", "c_m2p", "c_p2l", "c_l2l",
"c_l2p"]
for name in param_names:
assert test_params1[name] == test_params2[name]
python_cost_model = PythonFMMCostModel(
PythonFMMCostModel.get_constantone_calibration_params(),
pde_aware_translation_cost_model
)
python_model_results = []
for icase in range(len(traversals)-1):
traversal = traversals[icase]
level_to_order = level_to_orders[icase]
ndirect_sources_per_target_box = (
python_cost_model.get_ndirect_sources_per_target_box(traversal))
python_model_results.append(python_cost_model.get_fmm_modeled_cost(
traversal, level_to_order, ndirect_sources_per_target_box
python_params = python_cost_model.estimate_calibration_params(
python_model_results, timing_results[:-1], wall_time=wall_time
test_params_sanity(python_params)
cl_cost_model = CLFMMCostModel(
queue, CLFMMCostModel.get_constantone_calibration_params(),
pde_aware_translation_cost_model
)
cl_model_results = []
for icase in range(len(traversals_dev)-1):
traversal = traversals_dev[icase]
level_to_order = level_to_orders[icase]
ndirect_sources_per_target_box = (
cl_cost_model.get_ndirect_sources_per_target_box(traversal))
cl_model_results.append(cl_cost_model.get_fmm_modeled_cost(
traversal, level_to_order, ndirect_sources_per_target_box
cl_params = cl_cost_model.estimate_calibration_params(
cl_model_results, timing_results[:-1], wall_time=wall_time
)
test_params_sanity(cl_params)
if sys.version_info >= (3, 0):
test_params_equal(cl_params, python_params)
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
class OpCountingTranslationCostModel(object):
"""A translation cost model which assigns at cost of 1 to each operation."""
def __init__(self, dim, nlevels):
pass
@staticmethod
def direct():
return 1
@staticmethod
def p2l(level):
return 1
l2p = p2l
p2m = p2l
m2p = p2l
@staticmethod
def m2m(src_level, tgt_level):
return 1
l2l = m2m
m2l = m2m
@pytest.mark.opencl
@pytest.mark.parametrize(
("nsources", "ntargets", "dims", "dtype"), [
(5000, 5000, 3, np.float64)
]
)
def test_cost_model_gives_correct_op_counts_with_constantone_wrangler(
ctx_factory, nsources, ntargets, dims, dtype):
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=16)
targets = p_normal(queue, ntargets, dims, dtype, seed=19)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=20)
target_radii = rng.uniform(
queue, ntargets, a=0, b=0.04, dtype=dtype
).get()
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
from boxtree.tools import ConstantOneExpansionWrangler
wrangler = ConstantOneExpansionWrangler(trav.tree)
timing_data = {}
from boxtree.fmm import drive_fmm
src_weights = np.random.rand(tree.nsources).astype(tree.coord_dtype)
drive_fmm(trav, wrangler, src_weights, timing_data=timing_data)
queue, CLFMMCostModel.get_constantone_calibration_params(),
translation_cost_model_factory=OpCountingTranslationCostModel
)
level_to_order = np.array([1 for _ in range(tree.nlevels)])
ndirect_sources_per_target_box = cost_model.get_ndirect_sources_per_target_box(
trav_dev
)
modeled_time = cost_model(
trav_dev, level_to_order, ndirect_sources_per_target_box
mismatches = []
for stage in timing_data:
if (timing_data[stage]["ops_elapsed"]
!= cost_model.aggregate(modeled_time[stage])):
mismatches.append(
(stage, timing_data[stage]["ops_elapsed"], modeled_time[stage]))
assert not mismatches, "\n".join(str(s) for s in mismatches)
# You can test individual routines by typing
# $ python test_cost_model.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from pytest import main
main([__file__])