Skip to content
Snippets Groups Projects
test_arraycontext.py 30 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = "Copyright (C) 2020-21 University of Illinois Board of Trustees"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    from dataclasses import dataclass
    import numpy as np
    import pytest
    
    from pytools.obj_array import make_obj_array
    
    from arraycontext import (
            ArrayContext,
            dataclass_array_container, with_container_arithmetic,
            serialize_container, deserialize_container,
            freeze, thaw,
    
    from arraycontext import (  # noqa: F401
    
            pytest_generate_tests_for_array_contexts,
    
    from arraycontext.pytest import (_PytestPyOpenCLArrayContextFactoryWithClass,
                                     _PytestPytatoPyOpenCLArrayContextFactory)
    
    
    import logging
    logger = logging.getLogger(__name__)
    
    
    
    # {{{ array context fixture
    
    class _PyOpenCLArrayContextForTests(PyOpenCLArrayContext):
        """Like :class:`PyOpenCLArrayContext`, but applies no program transformations
        whatsoever. Only to be used for testing internal to :mod:`arraycontext`.
        """
    
        def transform_loopy_program(self, t_unit):
            return t_unit
    
    
    
    class _PytatoPyOpenCLArrayContextForTests(PytatoPyOpenCLArrayContext):
        """Like :class:`PytatoPyOpenCLArrayContext`, but applies no program
        transformations whatsoever. Only to be used for testing internal to
        :mod:`arraycontext`.
        """
    
        def transform_loopy_program(self, t_unit):
            return t_unit
    
    
    
    class _PyOpenCLArrayContextWithHostScalarsForTestsFactory(
            _PytestPyOpenCLArrayContextFactoryWithClass):
        actx_class = _PyOpenCLArrayContextForTests
    
    
    class _PyOpenCLArrayContextForTestsFactory(
            _PyOpenCLArrayContextWithHostScalarsForTestsFactory):
        force_device_scalars = True
    
    
    
    class _PytatoPyOpenCLArrayContextForTestsFactory(
            _PytestPytatoPyOpenCLArrayContextFactory):
    
        actx_class = _PytatoPyOpenCLArrayContextForTests
    
    pytest_generate_tests = pytest_generate_tests_for_array_contexts([
    
        _PyOpenCLArrayContextForTestsFactory,
        _PyOpenCLArrayContextWithHostScalarsForTestsFactory,
    
        _PytatoPyOpenCLArrayContextForTestsFactory,
    
    
    def _acf():
        import pyopencl as cl
    
        context = cl._csc()
        queue = cl.CommandQueue(context)
        return _PyOpenCLArrayContextForTests(queue, force_device_scalars=True)
    
    
    # {{{ stand-in DOFArray implementation
    
    @with_container_arithmetic(
            bcast_obj_array=True,
            bcast_numpy_array=True,
    
            rel_comparison=True,
            _cls_has_array_context_attr=True)
    
    class DOFArray:
        def __init__(self, actx, data):
            if not (actx is None or isinstance(actx, ArrayContext)):
                raise TypeError("actx must be of type ArrayContext")
    
            if not isinstance(data, tuple):
                raise TypeError("'data' argument must be a tuple")
    
            self.array_context = actx
            self.data = data
    
        __array_priority__ = 10
    
    
        def __bool__(self):
            if len(self) == 1 and self.data[0].size == 1:
                return bool(self.data[0])
    
            raise ValueError(
                    "The truth value of an array with more than one element is "
                    "ambiguous. Use actx.np.any(x) or actx.np.all(x)")
    
    
        def __len__(self):
            return len(self.data)
    
        def __getitem__(self, i):
            return self.data[i]
    
        @classmethod
        def _serialize_init_arrays_code(cls, instance_name):
            return {"_":
                    (f"{instance_name}_i", f"{instance_name}")}
    
        @classmethod
        def _deserialize_init_arrays_code(cls, template_instance_name, args):
            (_, arg), = args.items()
            # Why tuple([...])? https://stackoverflow.com/a/48592299
            return (f"{template_instance_name}.array_context, tuple([{arg}])")
    
        @property
        def real(self):
            return DOFArray(self.array_context, tuple([subary.real for subary in self]))
    
        @property
        def imag(self):
            return DOFArray(self.array_context, tuple([subary.imag for subary in self]))
    
    
    @serialize_container.register(DOFArray)
    def _serialize_dof_container(ary: DOFArray):
        return enumerate(ary.data)
    
    
    @deserialize_container.register(DOFArray)
    def _deserialize_dof_container(
            template, iterable):
        def _raise_index_inconsistency(i, stream_i):
            raise ValueError(
                    "out-of-sequence indices supplied in DOFArray deserialization "
                    f"(expected {i}, received {stream_i})")
    
        return type(template)(
                template.array_context,
                data=tuple(
                    v if i == stream_i else _raise_index_inconsistency(i, stream_i)
                    for i, (stream_i, v) in enumerate(iterable)))
    
    
    @freeze.register(DOFArray)
    def _freeze_dofarray(ary, actx=None):
        assert actx is None
        return type(ary)(
            None,
            tuple(ary.array_context.freeze(subary) for subary in ary.data))
    
    
    @thaw.register(DOFArray)
    def _thaw_dofarray(ary, actx):
        if ary.array_context is not None:
            raise ValueError("cannot thaw DOFArray that already has an array context")
    
        return type(ary)(
            actx,
            tuple(actx.thaw(subary) for subary in ary.data))
    
    # }}}
    
    
    
    # {{{ assert_close_to_numpy*
    
    def randn(shape, dtype):
        rng = np.random.default_rng()
        dtype = np.dtype(dtype)
    
        if dtype.kind == "c":
            dtype = np.dtype(f"<f{dtype.itemsize // 2}")
            return rng.standard_normal(shape, dtype) \
                + 1j * rng.standard_normal(shape, dtype)
        elif dtype.kind == "f":
            return rng.standard_normal(shape, dtype)
        elif dtype.kind == "i":
            return rng.integers(0, 128, shape, dtype)
        else:
            raise TypeError(dtype.kind)
    
    
    
    def assert_close_to_numpy(actx, op, args):
        assert np.allclose(
                actx.to_numpy(
                    op(actx.np, *[
                        actx.from_numpy(arg) if isinstance(arg, np.ndarray) else arg
                        for arg in args])),
                op(np, *args))
    
    def assert_close_to_numpy_in_containers(actx, op, args):
        assert_close_to_numpy(actx, op, args)
    
        dofarray_args = [
                DOFArray(actx, (actx.from_numpy(arg),))
                if isinstance(arg, np.ndarray) else arg
                for arg in args]
    
        actx_result = op(actx.np, *dofarray_args)
        if isinstance(actx_result, DOFArray):
            actx_result = actx_result[0]
    
        assert np.allclose(actx.to_numpy(actx_result), ref_result)
    
        # {{{ test object arrays of DOFArrays
    
        obj_array_args = [
                make_obj_array([arg]) if isinstance(arg, DOFArray) else arg
                for arg in dofarray_args]
    
        obj_array_result = op(actx.np, *obj_array_args)
        if isinstance(obj_array_result, np.ndarray):
            obj_array_result = obj_array_result[0][0]
    
        assert np.allclose(actx.to_numpy(obj_array_result), ref_result)
    
    # {{{ np.function same as numpy
    
    @pytest.mark.parametrize(("sym_name", "n_args", "dtype"), [
    
                ("arctan2", 2, np.float64),
                ("minimum", 2, np.float64),
                ("maximum", 2, np.float64),
                ("where", 3, np.float64),
    
                ("min", 1, np.float64),
                ("max", 1, np.float64),
    
                ("any", 1, np.float64),
                ("all", 1, np.float64),
    
    
                # float + complex
                ("sin", 1, np.float64),
                ("sin", 1, np.complex128),
                ("exp", 1, np.float64),
                ("exp", 1, np.complex128),
    
                ("conj", 1, np.float64),
                ("conj", 1, np.complex128),
                ("vdot", 2, np.float64),
                ("vdot", 2, np.complex128),
                ("abs", 1, np.float64),
                ("abs", 1, np.complex128),
    
                ("sum", 1, np.float64),
                ("sum", 1, np.complex64),
    
    def test_array_context_np_workalike(actx_factory, sym_name, n_args, dtype):
    
        actx = actx_factory()
    
        if not hasattr(actx.np, sym_name):
            pytest.skip(f"'{sym_name}' not implemented on '{type(actx).__name__}'")
    
        ndofs = 512
        args = [randn(ndofs, dtype) for i in range(n_args)]
    
    
        assert_close_to_numpy_in_containers(
                actx, lambda _np, *_args: getattr(_np, sym_name)(*_args), args)
    
    @pytest.mark.parametrize(("sym_name", "n_args", "dtype"), [
                ("zeros_like", 1, np.float64),
                ("zeros_like", 1, np.complex128),
                ("ones_like", 1, np.float64),
                ("ones_like", 1, np.complex128),
    
    def test_array_context_np_like(actx_factory, sym_name, n_args, dtype):
    
        ndofs = 512
        args = [randn(ndofs, dtype) for i in range(n_args)]
    
        assert_close_to_numpy(
                actx, lambda _np, *_args: getattr(_np, sym_name)(*_args), args)
    
    # {{{ array manipulations
    
    def test_actx_stack(actx_factory):
        actx = actx_factory()
    
        ndofs = 5000
        args = [np.random.randn(ndofs) for i in range(10)]
    
        assert_close_to_numpy_in_containers(
    
                actx, lambda _np, *_args: _np.stack(_args), args)
    
    def test_actx_concatenate(actx_factory):
        actx = actx_factory()
    
        ndofs = 5000
        args = [np.random.randn(ndofs) for i in range(10)]
    
    
        assert_close_to_numpy(
                actx, lambda _np, *_args: _np.concatenate(_args), args)
    
    def test_actx_reshape(actx_factory):
        actx = actx_factory()
    
    
        for new_shape in [(3, 2), (3, -1), (6,), (-1,)]:
            assert_close_to_numpy(
                    actx, lambda _np, *_args: _np.reshape(*_args),
                    (np.random.randn(2, 3), new_shape))
    
    
    def test_actx_ravel(actx_factory):
        from numpy.random import default_rng
        actx = actx_factory()
        rng = default_rng()
        ndim = rng.integers(low=1, high=6)
        shape = tuple(rng.integers(2, 7, ndim))
    
        assert_close_to_numpy(actx, lambda _np, ary: _np.ravel(ary),
                              (rng.random(shape),))
    
    
    def test_dof_array_arithmetic_same_as_numpy(actx_factory):
        actx = actx_factory()
    
        ndofs = 50_000
    
        def get_real(ary):
            return ary.real
    
        def get_imag(ary):
    
            return ary.imag
    
    
        import operator
        from pytools import generate_nonnegative_integer_tuples_below as gnitb
        from random import uniform, randrange
        for op_func, n_args, use_integers in [
                (operator.add, 2, False),
                (operator.sub, 2, False),
                (operator.mul, 2, False),
                (operator.truediv, 2, False),
                (operator.pow, 2, False),
                # FIXME pyopencl.Array doesn't do mod.
                #(operator.mod, 2, True),
                #(operator.mod, 2, False),
                #(operator.imod, 2, True),
                #(operator.imod, 2, False),
                # FIXME: Two outputs
                #(divmod, 2, False),
    
                (operator.iadd, 2, False),
                (operator.isub, 2, False),
                (operator.imul, 2, False),
                (operator.itruediv, 2, False),
    
                (operator.and_, 2, True),
                (operator.xor, 2, True),
                (operator.or_, 2, True),
    
                (operator.iand, 2, True),
                (operator.ixor, 2, True),
                (operator.ior, 2, True),
    
                (operator.ge, 2, False),
                (operator.lt, 2, False),
                (operator.gt, 2, False),
                (operator.eq, 2, True),
                (operator.ne, 2, True),
    
                (operator.pos, 1, False),
                (operator.neg, 1, False),
                (operator.abs, 1, False),
    
    
                (get_real, 1, False),
                (get_imag, 1, False),
    
                ]:
            for is_array_flags in gnitb(2, n_args):
                if sum(is_array_flags) == 0:
                    # all scalars, no need to test
                    continue
    
                if is_array_flags[0] == 0 and op_func in [
                        operator.iadd, operator.isub,
                        operator.imul, operator.itruediv,
                        operator.iand, operator.ixor, operator.ior,
                        ]:
                    # can't do in place operations with a scalar lhs
                    continue
    
    
    Matthias Diener's avatar
    Matthias Diener committed
                if op_func == operator.ge:
                    op_func_actx = actx.np.greater_equal
                elif op_func == operator.lt:
                    op_func_actx = actx.np.less
                elif op_func == operator.gt:
                    op_func_actx = actx.np.greater
                elif op_func == operator.eq:
                    op_func_actx = actx.np.equal
                elif op_func == operator.ne:
                    op_func_actx = actx.np.not_equal
                else:
                    op_func_actx = op_func
    
    
                args = [
                        (0.5+np.random.rand(ndofs)
                            if not use_integers else
                            np.random.randint(3, 200, ndofs))
    
                        if is_array_flag else
                        (uniform(0.5, 2)
                            if not use_integers
                            else randrange(3, 200))
                        for is_array_flag in is_array_flags]
    
                # {{{ get reference numpy result
    
                # make a copy for the in place operators
                ref_args = [
                        arg.copy() if isinstance(arg, np.ndarray) else arg
                        for arg in args]
                ref_result = op_func(*ref_args)
    
                # }}}
    
                # {{{ test DOFArrays
    
                actx_args = [
                        DOFArray(actx, (actx.from_numpy(arg),))
                        if isinstance(arg, np.ndarray) else arg
                        for arg in args]
    
    
    Matthias Diener's avatar
    Matthias Diener committed
                actx_result = actx.to_numpy(op_func_actx(*actx_args)[0])
    
    
                assert np.allclose(actx_result, ref_result)
    
                # }}}
    
                # {{{ test object arrays of DOFArrays
    
                # It would be very nice if comparisons on object arrays behaved
                # consistently with everything else. Alas, they do not. Instead:
                #
                # 0.5 < obj_array(DOFArray) -> obj_array([True])
                #
                # because hey, 0.5 < DOFArray returned something truthy.
    
                if op_func not in [
                        operator.eq, operator.ne,
                        operator.le, operator.lt,
                        operator.ge, operator.gt,
    
                        operator.iadd, operator.isub,
                        operator.imul, operator.itruediv,
                        operator.iand, operator.ixor, operator.ior,
    
                        # All Python objects are real-valued, right?
                        get_imag,
                        ]:
                    obj_array_args = [
                            make_obj_array([arg]) if isinstance(arg, DOFArray) else arg
                            for arg in actx_args]
    
                    obj_array_result = actx.to_numpy(
    
    Matthias Diener's avatar
    Matthias Diener committed
                            op_func_actx(*obj_array_args)[0][0])
    
    
                    assert np.allclose(obj_array_result, ref_result)
    
                # }}}
    
    
    @pytest.mark.parametrize("op", ["sum", "min", "max"])
    
    def test_reductions_same_as_numpy(actx_factory, op):
    
        ary = np.random.randn(3000)
        np_red = getattr(np, op)(ary)
        actx_red = getattr(actx.np, op)(actx.from_numpy(ary))
        actx_red = actx.to_numpy(actx_red)
    
    Matthias Diener's avatar
    Matthias Diener committed
    
        from numbers import Number
    
    
        if isinstance(actx, PyOpenCLArrayContext) and (not actx._force_device_scalars):
    
            assert isinstance(actx_red, Number)
    
    Matthias Diener's avatar
    Matthias Diener committed
        assert np.allclose(np_red, actx_red)
    
    
    @pytest.mark.parametrize("sym_name", ["any", "all"])
    def test_any_all_same_as_numpy(actx_factory, sym_name):
        actx = actx_factory()
        if not hasattr(actx.np, sym_name):
            pytest.skip(f"'{sym_name}' not implemented on '{type(actx).__name__}'")
    
        rng = np.random.default_rng()
        ary_any = rng.integers(0, 2, 512)
        ary_all = np.ones(512)
    
        assert_close_to_numpy_in_containers(actx,
                    lambda _np, *_args: getattr(_np, sym_name)(*_args), [ary_any])
        assert_close_to_numpy_in_containers(actx,
                    lambda _np, *_args: getattr(_np, sym_name)(*_args), [ary_all])
        assert_close_to_numpy_in_containers(actx,
                    lambda _np, *_args: getattr(_np, sym_name)(*_args), [1 - ary_all])
    
    
    
    # {{{ test array context einsum
    
    @pytest.mark.parametrize("spec", [
        "ij->ij",
        "ij->ji",
        "ii->i",
    ])
    def test_array_context_einsum_array_manipulation(actx_factory, spec):
        actx = actx_factory()
    
        mat = actx.from_numpy(np.random.randn(10, 10))
        res = actx.to_numpy(actx.einsum(spec, mat,
                                        tagged=(FirstAxisIsElementsTag())))
        ans = np.einsum(spec, actx.to_numpy(mat))
        assert np.allclose(res, ans)
    
    
    @pytest.mark.parametrize("spec", [
        "ij,ij->ij",
        "ij,ji->ij",
        "ij,kj->ik",
    ])
    def test_array_context_einsum_array_matmatprods(actx_factory, spec):
        actx = actx_factory()
    
        mat_a = actx.from_numpy(np.random.randn(5, 5))
        mat_b = actx.from_numpy(np.random.randn(5, 5))
        res = actx.to_numpy(actx.einsum(spec, mat_a, mat_b,
                                        tagged=(FirstAxisIsElementsTag())))
        ans = np.einsum(spec, actx.to_numpy(mat_a), actx.to_numpy(mat_b))
        assert np.allclose(res, ans)
    
    
    @pytest.mark.parametrize("spec", [
        "im,mj,k->ijk"
    ])
    def test_array_context_einsum_array_tripleprod(actx_factory, spec):
        actx = actx_factory()
    
        mat_a = actx.from_numpy(np.random.randn(7, 5))
        mat_b = actx.from_numpy(np.random.randn(5, 7))
        vec = actx.from_numpy(np.random.randn(7))
        res = actx.to_numpy(actx.einsum(spec, mat_a, mat_b, vec,
                                        tagged=(FirstAxisIsElementsTag())))
        ans = np.einsum(spec,
                        actx.to_numpy(mat_a),
                        actx.to_numpy(mat_b),
                        actx.to_numpy(vec))
        assert np.allclose(res, ans)
    
    # }}}
    
    
    
    # {{{ array container classes for test
    
    @with_container_arithmetic(bcast_obj_array=False,
            eq_comparison=False, rel_comparison=False)
    
    @dataclass_array_container
    @dataclass(frozen=True)
    class MyContainer:
        name: str
        mass: DOFArray
        momentum: np.ndarray
        enthalpy: DOFArray
    
        @property
        def array_context(self):
            return self.mass.array_context
    
    
    
    @with_container_arithmetic(
            bcast_obj_array=False,
            bcast_container_types=(DOFArray, np.ndarray),
            matmul=True,
            rel_comparison=True,)
    @dataclass_array_container
    @dataclass(frozen=True)
    class MyContainerDOFBcast:
        name: str
        mass: DOFArray
        momentum: np.ndarray
        enthalpy: DOFArray
    
        @property
        def array_context(self):
            return self.mass.array_context
    
    
    
    def _get_test_containers(actx, ambient_dim=2):
        x = DOFArray(actx, (actx.from_numpy(np.random.randn(50_000)),))
    
        # pylint: disable=unexpected-keyword-arg, no-value-for-parameter
        dataclass_of_dofs = MyContainer(
                name="container",
                mass=x,
                momentum=make_obj_array([x, x]),
                enthalpy=x)
    
    
        # pylint: disable=unexpected-keyword-arg, no-value-for-parameter
        bcast_dataclass_of_dofs = MyContainerDOFBcast(
                name="container",
                mass=x,
                momentum=make_obj_array([x, x]),
                enthalpy=x)
    
    
        ary_dof = x
        ary_of_dofs = make_obj_array([x, x, x])
    
        mat_of_dofs = np.empty((3, 3), dtype=object)
    
        for i in np.ndindex(mat_of_dofs.shape):
            mat_of_dofs[i] = x
    
    
        return (ary_dof, ary_of_dofs, mat_of_dofs, dataclass_of_dofs,
                bcast_dataclass_of_dofs)
    
    
    
    def test_container_multimap(actx_factory):
        actx = actx_factory()
    
        ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs, bcast_dc_of_dofs = \
                _get_test_containers(actx)
    
        def _check_allclose(f, arg1, arg2, atol=2.0e-14):
            assert np.linalg.norm(actx.to_numpy(f(arg1) - arg2)) < atol
    
    
        def func_all_scalar(x, y):
            return x + y
    
        def func_first_scalar(x, subary):
            return x + subary
    
        def func_multiple_scalar(a, subary1, b, subary2):
            return a * subary1 + b * subary2
    
        from arraycontext import rec_multimap_array_container
        result = rec_multimap_array_container(func_all_scalar, 1, 2)
        assert result == 3
    
        from functools import partial
        for ary in [ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs]:
            result = rec_multimap_array_container(func_first_scalar, 1, ary)
            rec_multimap_array_container(
                    partial(_check_allclose, lambda x: 1 + x),
                    ary, result)
    
            result = rec_multimap_array_container(func_multiple_scalar, 2, ary, 2, ary)
            rec_multimap_array_container(
                    partial(_check_allclose, lambda x: 4 * x),
                    ary, result)
    
        with pytest.raises(AssertionError):
            rec_multimap_array_container(func_multiple_scalar, 2, ary_dof, 2, dc_of_dofs)
    
        # }}}
    
    
    def test_container_arithmetic(actx_factory):
        actx = actx_factory()
    
        ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs, bcast_dc_of_dofs = \
                _get_test_containers(actx)
    
        def _check_allclose(f, arg1, arg2, atol=5.0e-14):
            assert np.linalg.norm(actx.to_numpy(f(arg1) - arg2)) < atol
    
    
        from functools import partial
        from arraycontext import rec_multimap_array_container
        for ary in [ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs]:
            rec_multimap_array_container(
                    partial(_check_allclose, lambda x: 3 * x),
                    ary, 2 * ary + ary)
            rec_multimap_array_container(
                    partial(_check_allclose, lambda x: actx.np.sin(x)),
                    ary, actx.np.sin(ary))
    
        with pytest.raises(TypeError):
            ary_of_dofs + dc_of_dofs
    
    
        with pytest.raises(TypeError):
            dc_of_dofs + ary_of_dofs
    
        with pytest.raises(TypeError):
            ary_dof + dc_of_dofs
    
        with pytest.raises(TypeError):
            dc_of_dofs + ary_dof
    
        bcast_result = ary_dof + bcast_dc_of_dofs
        bcast_dc_of_dofs + ary_dof
    
    
        assert actx.to_numpy(actx.np.linalg.norm(bcast_result.mass
                                                 - 2*ary_of_dofs)) < 1e-8
    
    
        mock_gradient = MyContainerDOFBcast(
                name="yo",
                mass=ary_of_dofs,
                momentum=mat_of_dofs,
                enthalpy=ary_of_dofs)
    
        grad_matvec_result = mock_gradient @ ary_of_dofs
        assert isinstance(grad_matvec_result.mass, DOFArray)
        assert grad_matvec_result.momentum.shape == (3,)
    
        assert actx.to_numpy(actx.np.linalg.norm(grad_matvec_result.mass
                                                 - 3*ary_of_dofs**2)) < 1e-8
    
        # }}}
    
    
    def test_container_freeze_thaw(actx_factory):
        actx = actx_factory()
    
        ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs, bcast_dc_of_dofs = \
                _get_test_containers(actx)
    
    
        # {{{ check
    
        from arraycontext import get_container_context
        from arraycontext import get_container_context_recursively
    
        assert get_container_context(ary_of_dofs) is None
        assert get_container_context(mat_of_dofs) is None
        assert get_container_context(ary_dof) is actx
        assert get_container_context(dc_of_dofs) is actx
    
        assert get_container_context_recursively(ary_of_dofs) is actx
        assert get_container_context_recursively(mat_of_dofs) is actx
    
        for ary in [ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs]:
            frozen_ary = freeze(ary)
            thawed_ary = thaw(frozen_ary, actx)
            frozen_ary = freeze(thawed_ary)
    
            assert get_container_context_recursively(frozen_ary) is None
            assert get_container_context_recursively(thawed_ary) is actx
    
    
        actx2 = actx.clone()
    
    
        ary_dof_frozen = freeze(ary_dof)
        with pytest.raises(ValueError) as exc_info:
            ary_dof + ary_dof_frozen
    
        assert "frozen" in str(exc_info.value)
    
    
        ary_dof_2 = thaw(freeze(ary_dof), actx2)
    
        with pytest.raises(ValueError):
            ary_dof + ary_dof_2
    
    
        # }}}
    
    
    @pytest.mark.parametrize("ord", [2, np.inf])
    def test_container_norm(actx_factory, ord):
        actx = actx_factory()
    
        from pytools.obj_array import make_obj_array
        c = MyContainer(name="hey", mass=1, momentum=make_obj_array([2, 3]), enthalpy=5)
        n1 = actx.np.linalg.norm(make_obj_array([c, c]), ord)
        n2 = np.linalg.norm([1, 2, 3, 5]*2, ord)
    
        assert abs(n1 - n2) < 1e-12
    
    # }}}
    
    # {{{ test from_numpy and to_numpy
    
    def test_numpy_conversion(actx_factory):
        actx = actx_factory()
    
        ac = MyContainer(
                name="test_numpy_conversion",
                mass=np.random.rand(42),
                momentum=make_obj_array([np.random.rand(42) for _ in range(3)]),
                enthalpy=np.random.rand(42),
                )
    
        from arraycontext import from_numpy, to_numpy
        ac_actx = from_numpy(ac, actx)
        ac_roundtrip = to_numpy(ac_actx, actx)
    
        assert np.allclose(ac.mass, ac_roundtrip.mass)
        assert np.allclose(ac.momentum[0], ac_roundtrip.momentum[0])
    
        from dataclasses import replace
        ac_with_cl = replace(ac, enthalpy=ac_actx.mass)
        with pytest.raises(TypeError):
            from_numpy(ac_with_cl, actx)
    
        with pytest.raises(TypeError):
            from_numpy(ac_actx, actx)
    
        with pytest.raises(ValueError):
            to_numpy(ac, actx)
    
    # }}}
    
    
    
    # {{{ test actx.np.linalg.norm
    
    
    @pytest.mark.parametrize("norm_ord", [2, np.inf])
    def test_norm_complex(actx_factory, norm_ord):
        actx = actx_factory()
    
        a = randn(2000, np.complex128)
    
    
        norm_a_ref = np.linalg.norm(a, norm_ord)
        norm_a = actx.np.linalg.norm(actx.from_numpy(a), norm_ord)
    
    
        norm_a = actx.to_numpy(norm_a)
    
        assert abs(norm_a_ref - norm_a)/norm_a < 1e-13
    
    
    
    @pytest.mark.parametrize("ndim", [1, 2, 3, 4, 5])
    def test_norm_ord_none(actx_factory, ndim):
        actx = actx_factory()
    
    
        from numpy.random import default_rng
    
    
        rng = default_rng()
        shape = tuple(rng.integers(2, 7, ndim))
    
        a = rng.random(shape)
    
        norm_a_ref = np.linalg.norm(a, ord=None)
        norm_a = actx.np.linalg.norm(actx.from_numpy(a), ord=None)
    
    
        np.testing.assert_allclose(actx.to_numpy(norm_a), norm_a_ref)
    
    # {{{ test_actx_compile helpers
    
    @with_container_arithmetic(bcast_obj_array=True, rel_comparison=True)
    @dataclass_array_container
    @dataclass(frozen=True)
    class Velocity2D:
    
        u: ArrayContainer
        v: ArrayContainer
    
    Matthias Diener's avatar
    Matthias Diener committed
        array_context: ArrayContext
    
    def scale_and_orthogonalize(alpha, vel):
        from arraycontext import rec_map_array_container
    
        actx = vel.array_context
    
        scaled_vel = rec_map_array_container(lambda x: alpha * x,
                                             vel)
        return Velocity2D(-scaled_vel.v, scaled_vel.u, actx)
    
    
    
    def test_actx_compile(actx_factory):
    
        from arraycontext import (to_numpy, from_numpy)
    
        actx = actx_factory()
    
    
        compiled_rhs = actx.compile(scale_and_orthogonalize)
    
    
        v_x = np.random.rand(10)
        v_y = np.random.rand(10)
    
    
    Matthias Diener's avatar
    Matthias Diener committed
        vel = from_numpy(Velocity2D(v_x, v_y, actx), actx)
    
        scaled_speed = compiled_rhs(np.float64(3.14), vel)
    
        result = to_numpy(scaled_speed, actx)
        np.testing.assert_allclose(result.u, -3.14*v_y)
        np.testing.assert_allclose(result.v, 3.14*v_x)
    
    
    def test_actx_compile_python_scalar(actx_factory):
        from arraycontext import (to_numpy, from_numpy)
        actx = actx_factory()
    
        compiled_rhs = actx.compile(scale_and_orthogonalize)
    
        v_x = np.random.rand(10)
        v_y = np.random.rand(10)
    
        vel = from_numpy(Velocity2D(v_x, v_y, actx), actx)
    
        scaled_speed = compiled_rhs(3.14, vel)
    
        result = to_numpy(scaled_speed, actx)
        np.testing.assert_allclose(result.u, -3.14*v_y)
        np.testing.assert_allclose(result.v, 3.14*v_x)
    
    
    # }}}
    
    
    # {{{ test_container_equality
    
    def test_container_equality(actx_factory):
        actx = actx_factory()
    
        ary_dof, _, _, dc_of_dofs, bcast_dc_of_dofs = \
                _get_test_containers(actx)
        _, _, _, dc_of_dofs_2, bcast_dc_of_dofs_2 = \
                _get_test_containers(actx)
    
        # MyContainer sets eq_comparison to False, so equality comparison should
        # not succeed.
        dc = MyContainer(name="yoink", mass=ary_dof, momentum=None, enthalpy=None)
        dc2 = MyContainer(name="yoink", mass=ary_dof, momentum=None, enthalpy=None)
        assert dc != dc2
    
        assert isinstance(bcast_dc_of_dofs == bcast_dc_of_dofs_2, MyContainerDOFBcast)
    
    
    # }}}
    
    
    # {{{ test_leaf_array_type_broadcasting
    
    @with_container_arithmetic(
        bcast_obj_array=True,
        bcast_numpy_array=True,
        rel_comparison=True,
        _cls_has_array_context_attr=True)
    @dataclass_array_container
    @dataclass(frozen=True)
    class Foo:
        u: DOFArray
    
        @property
        def array_context(self):
            return self.u.array_context
    
    
    def test_leaf_array_type_broadcasting(actx_factory):
        # test support for https://github.com/inducer/arraycontext/issues/49
        actx = actx_factory()
    
        foo = Foo(DOFArray(actx, (actx.zeros(3, dtype=np.float64) + 41, )))
        bar = foo + 4
        baz = foo + actx.from_numpy(4*np.ones((3, )))
        qux = actx.from_numpy(4*np.ones((3, ))) + foo
    
        np.testing.assert_allclose(actx.to_numpy(bar.u[0]),
                                   actx.to_numpy(baz.u[0]))
    
        np.testing.assert_allclose(actx.to_numpy(bar.u[0]),
                                   actx.to_numpy(qux.u[0]))
    
        def _actx_allows_scalar_broadcast(actx):
            if not isinstance(actx, PyOpenCLArrayContext):
                return True
            else:
                import pyopencl as cl