Newer
Older
__copyright__ = "Copyright (C) 2020-21 University of Illinois Board of Trustees"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from dataclasses import dataclass
import numpy as np
import pytest
from pytools.obj_array import make_obj_array
from arraycontext import (
ArrayContext,
dataclass_array_container, with_container_arithmetic,
serialize_container, deserialize_container,
freeze, thaw,
from arraycontext import ( # noqa: F401
pytest_generate_tests_for_array_contexts
as pytest_generate_tests,
_acf)
import logging
logger = logging.getLogger(__name__)
# {{{ stand-in DOFArray implementation
@with_container_arithmetic(
bcast_obj_array=True,
bcast_numpy_array=True,
rel_comparison=True,
_cls_has_array_context_attr=True)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
class DOFArray:
def __init__(self, actx, data):
if not (actx is None or isinstance(actx, ArrayContext)):
raise TypeError("actx must be of type ArrayContext")
if not isinstance(data, tuple):
raise TypeError("'data' argument must be a tuple")
self.array_context = actx
self.data = data
__array_priority__ = 10
def __len__(self):
return len(self.data)
def __getitem__(self, i):
return self.data[i]
@classmethod
def _serialize_init_arrays_code(cls, instance_name):
return {"_":
(f"{instance_name}_i", f"{instance_name}")}
@classmethod
def _deserialize_init_arrays_code(cls, template_instance_name, args):
(_, arg), = args.items()
# Why tuple([...])? https://stackoverflow.com/a/48592299
return (f"{template_instance_name}.array_context, tuple([{arg}])")
@property
def real(self):
return DOFArray(self.array_context, tuple([subary.real for subary in self]))
@property
def imag(self):
return DOFArray(self.array_context, tuple([subary.imag for subary in self]))
@serialize_container.register(DOFArray)
def _serialize_dof_container(ary: DOFArray):
return enumerate(ary.data)
@deserialize_container.register(DOFArray)
def _deserialize_dof_container(
template, iterable):
def _raise_index_inconsistency(i, stream_i):
raise ValueError(
"out-of-sequence indices supplied in DOFArray deserialization "
f"(expected {i}, received {stream_i})")
return type(template)(
template.array_context,
data=tuple(
v if i == stream_i else _raise_index_inconsistency(i, stream_i)
for i, (stream_i, v) in enumerate(iterable)))
@freeze.register(DOFArray)
def _freeze_dofarray(ary, actx=None):
assert actx is None
return type(ary)(
None,
tuple(ary.array_context.freeze(subary) for subary in ary.data))
@thaw.register(DOFArray)
def _thaw_dofarray(ary, actx):
if ary.array_context is not None:
raise ValueError("cannot thaw DOFArray that already has an array context")
return type(ary)(
actx,
tuple(actx.thaw(subary) for subary in ary.data))
# }}}
# {{{ assert_close_to_numpy*
def assert_close_to_numpy(actx, op, args):
assert np.allclose(
actx.to_numpy(
op(actx.np, *[
actx.from_numpy(arg) if isinstance(arg, np.ndarray) else arg
for arg in args])),
op(np, *args))
def assert_close_to_numpy_in_containers(actx, op, args):
assert_close_to_numpy(actx, op, args)
ref_result = op(np, *args)
# {{{ test DOFArrays
dofarray_args = [
DOFArray(actx, (actx.from_numpy(arg),))
if isinstance(arg, np.ndarray) else arg
for arg in args]
actx_result = actx.to_numpy(op(actx.np, *dofarray_args)[0])
assert np.allclose(actx_result, ref_result)
# {{{ test object arrays of DOFArrays
obj_array_args = [
make_obj_array([arg]) if isinstance(arg, DOFArray) else arg
for arg in dofarray_args]
obj_array_result = actx.to_numpy(op(actx.np, *obj_array_args)[0][0])
assert np.allclose(obj_array_result, ref_result)
# {{{ np.function same as numpy
@pytest.mark.parametrize(("sym_name", "n_args"), [
("sin", 1),
("exp", 1),
("arctan2", 2),
("minimum", 2),
("maximum", 2),
("where", 3),
("conj", 1),
])
def test_array_context_np_workalike(actx_factory, sym_name, n_args):
actx = actx_factory()
ndofs = 5000
args = [np.random.randn(ndofs) for i in range(n_args)]
assert_close_to_numpy_in_containers(
actx, lambda _np, *_args: getattr(_np, sym_name)(*_args), args)
@pytest.mark.parametrize(("sym_name", "n_args"), [
# ("empty_like", 1), # NOTE: fails np.allclose, obviously
("zeros_like", 1),
("ones_like", 1),
])
def test_array_context_np_like(actx_factory, sym_name, n_args):
actx = actx_factory()
ndofs = 5000
args = [np.random.randn(ndofs) for i in range(n_args)]
assert_close_to_numpy(
actx, lambda _np, *_args: getattr(_np, sym_name)(*_args), args)
def test_actx_stack(actx_factory):
actx = actx_factory()
ndofs = 5000
args = [np.random.randn(ndofs) for i in range(10)]
actx, lambda _np, *_args: _np.stack(_args), args)
def test_actx_concatenate(actx_factory):
actx = actx_factory()
ndofs = 5000
args = [np.random.randn(ndofs) for i in range(10)]
assert_close_to_numpy(
actx, lambda _np, *_args: _np.concatenate(_args), args)
def test_actx_reshape(actx_factory):
actx = actx_factory()
for new_shape in [(3, 2), (3, -1), (6,), (-1,)]:
assert_close_to_numpy(
actx, lambda _np, *_args: _np.reshape(*_args),
(np.random.randn(2, 3), new_shape))
def test_actx_ravel(actx_factory):
from numpy.random import default_rng
actx = actx_factory()
rng = default_rng()
ndim = rng.integers(low=1, high=6)
shape = tuple(rng.integers(2, 7, ndim))
assert_close_to_numpy(actx, lambda _np, ary: _np.ravel(ary),
(rng.random(shape),))
# {{{ arithmetic same as numpy
def test_dof_array_arithmetic_same_as_numpy(actx_factory):
actx = actx_factory()
ndofs = 50_000
def get_real(ary):
return ary.real
def get_imag(ary):
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import operator
from pytools import generate_nonnegative_integer_tuples_below as gnitb
from random import uniform, randrange
for op_func, n_args, use_integers in [
(operator.add, 2, False),
(operator.sub, 2, False),
(operator.mul, 2, False),
(operator.truediv, 2, False),
(operator.pow, 2, False),
# FIXME pyopencl.Array doesn't do mod.
#(operator.mod, 2, True),
#(operator.mod, 2, False),
#(operator.imod, 2, True),
#(operator.imod, 2, False),
# FIXME: Two outputs
#(divmod, 2, False),
(operator.iadd, 2, False),
(operator.isub, 2, False),
(operator.imul, 2, False),
(operator.itruediv, 2, False),
(operator.and_, 2, True),
(operator.xor, 2, True),
(operator.or_, 2, True),
(operator.iand, 2, True),
(operator.ixor, 2, True),
(operator.ior, 2, True),
(operator.ge, 2, False),
(operator.lt, 2, False),
(operator.gt, 2, False),
(operator.eq, 2, True),
(operator.ne, 2, True),
(operator.pos, 1, False),
(operator.neg, 1, False),
(operator.abs, 1, False),
(get_real, 1, False),
(get_imag, 1, False),
]:
for is_array_flags in gnitb(2, n_args):
if sum(is_array_flags) == 0:
# all scalars, no need to test
continue
if is_array_flags[0] == 0 and op_func in [
operator.iadd, operator.isub,
operator.imul, operator.itruediv,
operator.iand, operator.ixor, operator.ior,
]:
# can't do in place operations with a scalar lhs
continue
if op_func == operator.ge:
op_func_actx = actx.np.greater_equal
elif op_func == operator.lt:
op_func_actx = actx.np.less
elif op_func == operator.gt:
op_func_actx = actx.np.greater
elif op_func == operator.eq:
op_func_actx = actx.np.equal
elif op_func == operator.ne:
op_func_actx = actx.np.not_equal
else:
op_func_actx = op_func
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
args = [
(0.5+np.random.rand(ndofs)
if not use_integers else
np.random.randint(3, 200, ndofs))
if is_array_flag else
(uniform(0.5, 2)
if not use_integers
else randrange(3, 200))
for is_array_flag in is_array_flags]
# {{{ get reference numpy result
# make a copy for the in place operators
ref_args = [
arg.copy() if isinstance(arg, np.ndarray) else arg
for arg in args]
ref_result = op_func(*ref_args)
# }}}
# {{{ test DOFArrays
actx_args = [
DOFArray(actx, (actx.from_numpy(arg),))
if isinstance(arg, np.ndarray) else arg
for arg in args]
actx_result = actx.to_numpy(op_func_actx(*actx_args)[0])
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
assert np.allclose(actx_result, ref_result)
# }}}
# {{{ test object arrays of DOFArrays
# It would be very nice if comparisons on object arrays behaved
# consistently with everything else. Alas, they do not. Instead:
#
# 0.5 < obj_array(DOFArray) -> obj_array([True])
#
# because hey, 0.5 < DOFArray returned something truthy.
if op_func not in [
operator.eq, operator.ne,
operator.le, operator.lt,
operator.ge, operator.gt,
operator.iadd, operator.isub,
operator.imul, operator.itruediv,
operator.iand, operator.ixor, operator.ior,
# All Python objects are real-valued, right?
get_imag,
]:
obj_array_args = [
make_obj_array([arg]) if isinstance(arg, DOFArray) else arg
for arg in actx_args]
obj_array_result = actx.to_numpy(
assert np.allclose(obj_array_result, ref_result)
# }}}
# }}}
# {{{ reductions same as numpy
def test_dof_array_reductions_same_as_numpy(actx_factory):
actx = actx_factory()
for name in ["sum", "min", "max"]:
ary = np.random.randn(3000)
np_red = getattr(np, name)(ary)
actx_red = getattr(actx.np, name)(actx.from_numpy(ary))
if not np.isscalar(actx_red):
actx_red = actx.to_numpy(actx_red)
assert np.allclose(np_red, actx_red)
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# {{{ test array context einsum
@pytest.mark.parametrize("spec", [
"ij->ij",
"ij->ji",
"ii->i",
])
def test_array_context_einsum_array_manipulation(actx_factory, spec):
actx = actx_factory()
mat = actx.from_numpy(np.random.randn(10, 10))
res = actx.to_numpy(actx.einsum(spec, mat,
tagged=(FirstAxisIsElementsTag())))
ans = np.einsum(spec, actx.to_numpy(mat))
assert np.allclose(res, ans)
@pytest.mark.parametrize("spec", [
"ij,ij->ij",
"ij,ji->ij",
"ij,kj->ik",
])
def test_array_context_einsum_array_matmatprods(actx_factory, spec):
actx = actx_factory()
mat_a = actx.from_numpy(np.random.randn(5, 5))
mat_b = actx.from_numpy(np.random.randn(5, 5))
res = actx.to_numpy(actx.einsum(spec, mat_a, mat_b,
tagged=(FirstAxisIsElementsTag())))
ans = np.einsum(spec, actx.to_numpy(mat_a), actx.to_numpy(mat_b))
assert np.allclose(res, ans)
@pytest.mark.parametrize("spec", [
"im,mj,k->ijk"
])
def test_array_context_einsum_array_tripleprod(actx_factory, spec):
actx = actx_factory()
mat_a = actx.from_numpy(np.random.randn(7, 5))
mat_b = actx.from_numpy(np.random.randn(5, 7))
vec = actx.from_numpy(np.random.randn(7))
res = actx.to_numpy(actx.einsum(spec, mat_a, mat_b, vec,
tagged=(FirstAxisIsElementsTag())))
ans = np.einsum(spec,
actx.to_numpy(mat_a),
actx.to_numpy(mat_b),
actx.to_numpy(vec))
assert np.allclose(res, ans)
# }}}
# {{{ test array container
@with_container_arithmetic(bcast_obj_array=False, rel_comparison=True)
@dataclass_array_container
@dataclass(frozen=True)
class MyContainer:
name: str
mass: DOFArray
momentum: np.ndarray
enthalpy: DOFArray
@property
def array_context(self):
return self.mass.array_context
@with_container_arithmetic(
bcast_obj_array=False,
bcast_container_types=(DOFArray, np.ndarray),
matmul=True,
rel_comparison=True,)
@dataclass_array_container
@dataclass(frozen=True)
class MyContainerDOFBcast:
name: str
mass: DOFArray
momentum: np.ndarray
enthalpy: DOFArray
@property
def array_context(self):
return self.mass.array_context
def _get_test_containers(actx, ambient_dim=2):
x = DOFArray(actx, (actx.from_numpy(np.random.randn(50_000)),))
# pylint: disable=unexpected-keyword-arg, no-value-for-parameter
dataclass_of_dofs = MyContainer(
name="container",
mass=x,
momentum=make_obj_array([x, x]),
enthalpy=x)
# pylint: disable=unexpected-keyword-arg, no-value-for-parameter
bcast_dataclass_of_dofs = MyContainerDOFBcast(
name="container",
mass=x,
momentum=make_obj_array([x, x]),
enthalpy=x)
ary_dof = x
ary_of_dofs = make_obj_array([x, x, x])
mat_of_dofs = np.empty((3, 3), dtype=object)
for i in np.ndindex(mat_of_dofs.shape):
mat_of_dofs[i] = x
return (ary_dof, ary_of_dofs, mat_of_dofs, dataclass_of_dofs,
bcast_dataclass_of_dofs)
def test_container_multimap(actx_factory):
actx = actx_factory()
ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs, bcast_dc_of_dofs = \
_get_test_containers(actx)
# {{{ check
def _check_allclose(f, arg1, arg2, atol=2.0e-14):
assert np.linalg.norm(actx.to_numpy(f(arg1) - arg2)) < atol
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
def func_all_scalar(x, y):
return x + y
def func_first_scalar(x, subary):
return x + subary
def func_multiple_scalar(a, subary1, b, subary2):
return a * subary1 + b * subary2
from arraycontext import rec_multimap_array_container
result = rec_multimap_array_container(func_all_scalar, 1, 2)
assert result == 3
from functools import partial
for ary in [ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs]:
result = rec_multimap_array_container(func_first_scalar, 1, ary)
rec_multimap_array_container(
partial(_check_allclose, lambda x: 1 + x),
ary, result)
result = rec_multimap_array_container(func_multiple_scalar, 2, ary, 2, ary)
rec_multimap_array_container(
partial(_check_allclose, lambda x: 4 * x),
ary, result)
with pytest.raises(AssertionError):
rec_multimap_array_container(func_multiple_scalar, 2, ary_dof, 2, dc_of_dofs)
# }}}
def test_container_arithmetic(actx_factory):
actx = actx_factory()
ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs, bcast_dc_of_dofs = \
_get_test_containers(actx)
# {{{ check
def _check_allclose(f, arg1, arg2, atol=5.0e-14):
assert np.linalg.norm(actx.to_numpy(f(arg1) - arg2)) < atol
from functools import partial
from arraycontext import rec_multimap_array_container
for ary in [ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs]:
rec_multimap_array_container(
partial(_check_allclose, lambda x: 3 * x),
ary, 2 * ary + ary)
rec_multimap_array_container(
partial(_check_allclose, lambda x: actx.np.sin(x)),
ary, actx.np.sin(ary))
with pytest.raises(TypeError):
ary_of_dofs + dc_of_dofs
with pytest.raises(TypeError):
dc_of_dofs + ary_of_dofs
with pytest.raises(TypeError):
ary_dof + dc_of_dofs
with pytest.raises(TypeError):
dc_of_dofs + ary_dof
bcast_result = ary_dof + bcast_dc_of_dofs
bcast_dc_of_dofs + ary_dof
res = bcast_result.mass - 2*ary_of_dofs
assert np.linalg.norm(actx.to_numpy(res[0][0]) < 1e-8)
mock_gradient = MyContainerDOFBcast(
name="yo",
mass=ary_of_dofs,
momentum=mat_of_dofs,
enthalpy=ary_of_dofs)
grad_matvec_result = mock_gradient @ ary_of_dofs
assert isinstance(grad_matvec_result.mass, DOFArray)
assert grad_matvec_result.momentum.shape == (3,)
res = grad_matvec_result.mass - 3*ary_of_dofs**2
assert np.linalg.norm(actx.to_numpy(res[0][0]) < 1e-8)
# }}}
def test_container_freeze_thaw(actx_factory):
actx = actx_factory()
ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs, bcast_dc_of_dofs = \
_get_test_containers(actx)
# {{{ check
from arraycontext import get_container_context
from arraycontext import get_container_context_recursively
assert get_container_context(ary_of_dofs) is None
assert get_container_context(mat_of_dofs) is None
assert get_container_context(ary_dof) is actx
assert get_container_context(dc_of_dofs) is actx
assert get_container_context_recursively(ary_of_dofs) is actx
assert get_container_context_recursively(mat_of_dofs) is actx
for ary in [ary_dof, ary_of_dofs, mat_of_dofs, dc_of_dofs]:
frozen_ary = freeze(ary)
thawed_ary = thaw(frozen_ary, actx)
frozen_ary = freeze(thawed_ary)
assert get_container_context_recursively(frozen_ary) is None
assert get_container_context_recursively(thawed_ary) is actx
ary_dof_frozen = freeze(ary_dof)
with pytest.raises(ValueError) as exc_info:
ary_dof + ary_dof_frozen
assert "frozen" in str(exc_info.value)
ary_dof_2 = thaw(freeze(ary_dof), actx2)
with pytest.raises(ValueError):
ary_dof + ary_dof_2
# }}}
@pytest.mark.parametrize("ord", [2, np.inf])
def test_container_norm(actx_factory, ord):
actx = actx_factory()
from pytools.obj_array import make_obj_array
c = MyContainer(name="hey", mass=1, momentum=make_obj_array([2, 3]), enthalpy=5)
n1 = actx.np.linalg.norm(make_obj_array([c, c]), ord)
n2 = np.linalg.norm([1, 2, 3, 5]*2, ord)
assert abs(n1 - n2) < 1e-12
# }}}
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
# {{{ test from_numpy and to_numpy
def test_numpy_conversion(actx_factory):
actx = actx_factory()
ac = MyContainer(
name="test_numpy_conversion",
mass=np.random.rand(42),
momentum=make_obj_array([np.random.rand(42) for _ in range(3)]),
enthalpy=np.random.rand(42),
)
from arraycontext import from_numpy, to_numpy
ac_actx = from_numpy(ac, actx)
ac_roundtrip = to_numpy(ac_actx, actx)
assert np.allclose(ac.mass, ac_roundtrip.mass)
assert np.allclose(ac.momentum[0], ac_roundtrip.momentum[0])
from dataclasses import replace
ac_with_cl = replace(ac, enthalpy=ac_actx.mass)
with pytest.raises(TypeError):
from_numpy(ac_with_cl, actx)
with pytest.raises(TypeError):
from_numpy(ac_actx, actx)
with pytest.raises(ValueError):
to_numpy(ac, actx)
# }}}
@pytest.mark.parametrize("norm_ord", [2, np.inf])
def test_norm_complex(actx_factory, norm_ord):
actx = actx_factory()
a = np.random.randn(2000) + 1j * np.random.randn(2000)
norm_a_ref = np.linalg.norm(a, norm_ord)
norm_a = actx.np.linalg.norm(actx.from_numpy(a), norm_ord)
if not np.isscalar(norm_a):
norm_a = actx.to_numpy(norm_a)
assert abs(norm_a_ref - norm_a)/norm_a < 1e-13
@pytest.mark.parametrize("ndim", [1, 2, 3, 4, 5])
def test_norm_ord_none(actx_factory, ndim):
from numpy.random import default_rng
actx = actx_factory()
rng = default_rng()
shape = tuple(rng.integers(2, 7, ndim))
a = rng.random(shape)
norm_a_ref = np.linalg.norm(a, ord=None)
norm_a = actx.np.linalg.norm(actx.from_numpy(a), ord=None)
if not np.isscalar(norm_a):
norm_a = actx.to_numpy(norm_a)
np.testing.assert_allclose(norm_a, norm_a_ref)
# {{{ test_actx_compile helpers
@with_container_arithmetic(bcast_obj_array=True, rel_comparison=True)
@dataclass_array_container
@dataclass(frozen=True)
class Velocity2D:
u: ArrayContainer
v: ArrayContainer
def scale_and_orthogonalize(alpha, vel):
from arraycontext import rec_map_array_container
scaled_vel = rec_map_array_container(lambda x: alpha * x,
vel)
return Velocity2D(-scaled_vel.v, scaled_vel.u, actx)
# }}}
def test_actx_compile(actx_factory):
from arraycontext import (to_numpy, from_numpy)
compiled_rhs = actx.compile(scale_and_orthogonalize)
v_x = np.random.rand(10)
v_y = np.random.rand(10)
scaled_speed = compiled_rhs(np.float64(3.14), vel)
result = to_numpy(scaled_speed, actx)
np.testing.assert_allclose(result.u, -3.14*v_y)
np.testing.assert_allclose(result.v, 3.14*v_x)