Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
loopy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kaushik Kulkarni
loopy
Commits
d68e69a8
Commit
d68e69a8
authored
13 years ago
by
Andreas Klöckner
Browse files
Options
Downloads
Patches
Plain Diff
Add SEM test case from Reagan airport with Tim.
parent
d20e0267
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test/test_sem_reagan.py
+117
-0
117 additions, 0 deletions
test/test_sem_reagan.py
with
117 additions
and
0 deletions
test/test_sem_reagan.py
0 → 100644
+
117
−
0
View file @
d68e69a8
from
__future__
import
division
import
numpy
as
np
import
pyopencl
as
cl
import
loopy
as
lp
from
pyopencl.tools
import
pytest_generate_tests_for_pyopencl
\
as
pytest_generate_tests
def
test_tim2d
(
ctx_factory
):
dtype
=
np
.
float32
ctx
=
ctx_factory
()
order
=
"
C
"
n
=
8
from
pymbolic
import
var
K_sym
=
var
(
"
K
"
)
field_shape
=
(
K_sym
,
n
,
n
)
# K - run-time symbolic
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
"
[K] -> {[i,j,e,m,o,gi]: 0<=i,j,m,o<%d and 0<=e<K and 0<=gi<3}
"
%
n
,
[
"
ur(a,b) := sum_float32(@o, D[a,o]*u[e,o,b])
"
,
"
us(a,b) := sum_float32(@o, D[b,o]*u[e,a,o])
"
,
#"Gu(mat_entry,a,b) := G[mat_entry,e,m,j]*ur(m,j)",
"
Gux(a,b) := G[0,e,a,b]*ur(a,b)+G[1,e,a,b]*us(a,b)
"
,
"
Guy(a,b) := G[1,e,a,b]*ur(a,b)+G[2,e,a,b]*us(a,b)
"
,
"
lap[e,i,j] =
"
"
sum_float32(m, D[m,i]*Gux(m,j))
"
"
+ sum_float32(m, D[m,j]*Guy(i,m))
"
],
[
lp
.
ArrayArg
(
"
u
"
,
dtype
,
shape
=
field_shape
,
order
=
order
),
lp
.
ArrayArg
(
"
lap
"
,
dtype
,
shape
=
field_shape
,
order
=
order
),
lp
.
ArrayArg
(
"
G
"
,
dtype
,
shape
=
(
3
,)
+
field_shape
,
order
=
order
),
# lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order),
lp
.
ArrayArg
(
"
D
"
,
dtype
,
shape
=
(
n
,
n
),
order
=
order
),
# lp.ImageArg("D", dtype, shape=(n, n)),
lp
.
ScalarArg
(
"
K
"
,
np
.
int32
,
approximately
=
1000
),
],
name
=
"
semlap2D
"
,
assumptions
=
"
K>=1
"
)
seq_knl
=
knl
def
variant_orig
(
knl
):
knl
=
lp
.
add_prefetch
(
knl
,
"
D
"
,
[
"
m
"
,
"
j
"
,
"
i
"
,
"
o
"
])
knl
=
lp
.
add_prefetch
(
knl
,
"
u
"
,
[
"
i
"
,
"
j
"
,
"
o
"
])
knl
=
lp
.
precompute
(
knl
,
"
ur
"
,
np
.
float32
,
[
"
a
"
,
"
b
"
])
knl
=
lp
.
precompute
(
knl
,
"
us
"
,
np
.
float32
,
[
"
a
"
,
"
b
"
])
knl
=
lp
.
split_dimension
(
knl
,
"
e
"
,
1
,
outer_tag
=
"
g.0
"
)
#, slabs=(0, 1))
knl
=
lp
.
tag_dimensions
(
knl
,
dict
(
i
=
"
l.0
"
,
j
=
"
l.1
"
))
knl
=
lp
.
tag_dimensions
(
knl
,
dict
(
o
=
"
unr
"
))
knl
=
lp
.
tag_dimensions
(
knl
,
dict
(
m
=
"
unr
"
))
# knl = lp.add_prefetch(knl, "G", [2,3], default_tag=None) # axis/argument indices on G
knl
=
lp
.
add_prefetch
(
knl
,
"
G
"
,
[
2
,
3
])
# axis/argument indices on G
def
variant_prefetch
(
knl
):
knl
=
lp
.
precompute
(
knl
,
"
ur
"
,
np
.
float32
,
[
"
a
"
,
"
b
"
])
knl
=
lp
.
precompute
(
knl
,
"
us
"
,
np
.
float32
,
[
"
a
"
,
"
b
"
])
return
knl
def
variant_1
(
knl
):
# BUG? why can't the prefetch be in the j loop??!
print
knl
from
pudb
import
set_trace
;
set_trace
()
knl
=
lp
.
precompute
(
knl
,
"
ur
"
,
np
.
float32
,
[
"
a
"
])
print
knl
1
/
0
#knl = lp.precompute(knl, "us", np.float32, ["a"])
return
knl
def
variant_g_prefetch
(
knl
):
knl
=
lp
.
precompute
(
knl
,
"
ur
"
,
np
.
float32
,
[
"
a
"
])
knl
=
lp
.
precompute
(
knl
,
"
us
"
,
np
.
float32
,
[
"
a
"
])
knl
=
lp
.
add_prefetch
(
knl
,
"
G
"
,
per_access
=
True
)
# IMPLEMENT!
return
knl
def
variant_gu_precomp
(
knl
):
knl
=
lp
.
precompute
(
knl
,
"
ur
"
,
np
.
float32
,
[
"
a
"
])
knl
=
lp
.
precompute
(
knl
,
"
us
"
,
np
.
float32
,
[
"
a
"
])
knl
=
lp
.
precompute
(
knl
,
"
Gux
"
,
np
.
float32
,
[
"
a
"
,
"
b
"
])
knl
=
lp
.
precompute
(
knl
,
"
Guy
"
,
np
.
float32
,
[
"
a
"
,
"
b
"
])
return
knl
#for variant in [variant_orig]:
for
variant
in
[
variant_1
]:
kernel_gen
=
lp
.
generate_loop_schedules
(
variant
(
knl
))
kernel_gen
=
lp
.
check_kernels
(
kernel_gen
,
dict
(
K
=
1000
))
K
=
1000
lp
.
auto_test_vs_ref
(
seq_knl
,
ctx
,
kernel_gen
,
op_count
=
K
*
(
n
*
n
*
n
*
2
*
2
+
n
*
n
*
2
*
3
+
n
**
3
*
2
*
2
)
/
1e9
,
op_label
=
"
GFlops
"
,
parameters
=
{
"
K
"
:
K
})
if
__name__
==
"
__main__
"
:
import
sys
if
len
(
sys
.
argv
)
>
1
:
exec
(
sys
.
argv
[
1
])
else
:
from
py.test.cmdline
import
main
main
([
__file__
])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment