Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
loopy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kaushik Kulkarni
loopy
Commits
12bd253a
Commit
12bd253a
authored
12 years ago
by
Andreas Klöckner
Browse files
Options
Downloads
Patches
Plain Diff
Delete stale examples.
parent
396da6d1
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
examples/acoustics3d.lpy
+0
-86
0 additions, 86 deletions
examples/acoustics3d.lpy
examples/matrix-mul.py
+0
-86
0 additions, 86 deletions
examples/matrix-mul.py
examples/sem_reagan.py
+2
-0
2 additions, 0 deletions
examples/sem_reagan.py
with
2 additions
and
172 deletions
examples/acoustics3d.lpy
deleted
100644 → 0
+
0
−
86
View file @
396da6d1
% ------------------------------------------------------
% VOLUME KERNEL
% input: u,v,w,p are float, Np x K
% input: DrDsDt is float4, Np x Np
% input: dRdx, dRdy, dRdz are float4, Np x K
% output: rhsu, rhsv, rhsw, rhsp, Np x K
% loop domain: 1<= n,m <= Np, 1<= e <= K
% BODY >>>
% reduction on m (assume DrDsDt is float4 for convenience)
dudR = DrDsDt(n,m)*u(m,e)
dvdR = DrDsDt(n,m)*v(m,e)
dwdR = DrDsDt(n,m)*w(m,e)
dpdR = DrDsDt(n,m)*p(m,e)
% volume flux
rhsu(n,e) = dot4(dRdx(k),dpdR)
rhsv(n,e) = dot4(dRdy(k),dpdR)
rhsw(n,e) = dot4(dRdz(k),dpdR)
rhsp(n,e) = dot4(dRdx(k), dudR) + dot4(dRdy(k), dvdR) + dot4(dRdz(k), dwdR)
% BODY <<<
% ------------------------------------------------------
% ------------------------------------------------------
% SURFACE KERNEL
% input: u,v,w,p are float, Np x K
% input: LIFT is float, Np x (Nfp*Nfaces)
% input: nx,ny,nz,Fscale are float, (Nfp*Nfaces) x K
% input/output: rhsu, rhsv, rhsw, rhsp are float Np x K
% loop-domain 1<= m <= Nfp*Nfaces, 1<= n <= Np, 1<= e <= K
% BODY >>>
% find surface node indices at both traces
idP = vmapP(m,e)
idM = vmapM(m,e)
% can we bounce to single index (row/column major is important)
% can we use this indexing here for clarity ?
du = u(idP)-u(idM)
dv = v(idP)-v(idM)
dw = w(idP)-w(idM)
dp = bc(idM)*p(idP) - p(idM)
dQ = 0.5*Fscale(m,e)*(dp - nx(m,e)*du - ny(m,e)*dv - nz(m,e)*dw)
fluxu = -nx(m,e)*dQ
fluxv = -ny(m,e)*dQ
fluxw = -nz(m,e)*dQ
fluxp = dQ
% reduction here
rhsu(n,e) += LIFT(n,m)*fluxu
rhsv(n,e) += LIFT(n,m)*fluxv
rhsw(n,e) += LIFT(n,m)*fluxw
rhsp(n,e) += LIFT(n,m)*fluxp
% BODY <<<
% ------------------------------------------------------
% ------------------------------------------------------
% RK kernel here
% input/output: u,v,w,p are float, Np*K
% input/output: resu,resv,resw,resp are float, Np*K
% input parameters rk4a, rk4b, dt
% 1 <= n <= K*Np,
% BODY >>>
resu(n) = rk4a*resu(n) + dt*rhsu
resv(n) = rk4a*resv(n) + dt*rhsv
resw(n) = rk4a*resw(n) + dt*rhsw
resp(n) = rk4a*resp(n) + dt*rhsp
u(n) += rk4b*resu(n)
v(n) += rk4b*resv(n)
w(n) += rk4b*resw(n)
p(n) += rk4b*resp(n)
% BODY <<<
% ------------------------------------------------------
\ No newline at end of file
This diff is collapsed.
Click to expand it.
examples/matrix-mul.py
deleted
100644 → 0
+
0
−
86
View file @
396da6d1
import
numpy
as
np
import
pyopencl
as
cl
import
pyopencl.array
as
cl_array
import
loopy
as
lp
def
make_well_conditioned_dev_matrix
(
queue
,
shape
,
dtype
=
np
.
float32
,
order
=
"
C
"
,
ran_factor
=
1
,
id_factor
=
5
,
inc_factor
=
0
,
od
=
0
):
if
isinstance
(
shape
,
int
):
shape
=
(
shape
,
shape
)
l
=
max
(
shape
)
eye_ish
=
id_factor
*
np
.
eye
(
l
,
k
=
od
)
if
inc_factor
:
eye_ish
[
np
.
arange
(
l
),
np
.
arange
(
l
)]
=
inc_factor
*
np
.
arange
(
l
)
ary
=
np
.
asarray
(
ran_factor
*
np
.
random
.
randn
(
*
shape
)
+
eye_ish
[:
shape
[
0
],
:
shape
[
1
]],
dtype
=
dtype
,
order
=
order
)
return
cl_array
.
to_device
(
queue
,
ary
)
def
image_matrix_mul_ilp
(
ctx_factory
=
cl
.
create_some_context
):
dtype
=
np
.
float32
ctx
=
ctx_factory
()
order
=
"
C
"
queue
=
cl
.
CommandQueue
(
ctx
,
properties
=
cl
.
command_queue_properties
.
PROFILING_ENABLE
)
n
=
16
*
10
from
pymbolic
import
var
a
,
b
,
c
,
i
,
j
,
k
,
n_sym
=
[
var
(
s
)
for
s
in
"
abcijkn
"
]
knl
=
lp
.
LoopKernel
(
ctx
.
devices
[
0
],
"
{[i,j,k]: 0<=i,j,k<%d}
"
%
n
,
[
(
c
[
i
,
j
],
a
[
i
,
k
]
*
b
[
k
,
j
])
],
[
lp
.
ImageArg
(
"
a
"
,
dtype
,
2
),
lp
.
ImageArg
(
"
b
"
,
dtype
,
2
),
lp
.
GlobalArg
(
"
c
"
,
dtype
,
shape
=
(
n
,
n
),
order
=
order
),
],
name
=
"
matmul
"
)
ilp
=
4
knl
=
lp
.
split_iname
(
knl
,
"
i
"
,
2
,
outer_tag
=
"
g.0
"
,
inner_tag
=
"
l.1
"
)
j_inner_split
=
16
knl
=
lp
.
split_iname
(
knl
,
"
j
"
,
ilp
*
j_inner_split
,
outer_tag
=
"
g.1
"
)
knl
=
lp
.
split_iname
(
knl
,
"
j_inner
"
,
j_inner_split
,
outer_tag
=
"
ilp
"
,
inner_tag
=
"
l.0
"
)
knl
=
lp
.
split_iname
(
knl
,
"
k
"
,
2
)
knl
=
lp
.
add_prefetch
(
knl
,
'
a
'
,
[
"
i_inner
"
,
"
k_inner
"
])
knl
=
lp
.
add_prefetch
(
knl
,
'
b
'
,
[
"
j_inner_outer
"
,
"
j_inner_inner
"
,
"
k_inner
"
])
assert
knl
.
get_problems
({})[
0
]
<=
2
kernel_gen
=
(
lp
.
insert_register_prefetches
(
knl
)
for
knl
in
lp
.
generate_loop_schedules
(
knl
))
a
=
make_well_conditioned_dev_matrix
(
queue
,
n
,
dtype
=
dtype
,
order
=
order
,
ran_factor
=
1
,
id_factor
=
5
)
b
=
make_well_conditioned_dev_matrix
(
queue
,
n
,
dtype
=
dtype
,
order
=
order
,
ran_factor
=
1
,
id_factor
=
5
,
inc_factor
=
0
)
c
=
cl_array
.
empty_like
(
a
)
a_img
=
cl
.
image_from_array
(
ctx
,
a
.
get
(),
1
)
b_img
=
cl
.
image_from_array
(
ctx
,
b
.
get
(),
1
)
def
launcher
(
kernel
,
gsize
,
lsize
,
check
):
evt
=
kernel
(
queue
,
gsize
(),
lsize
(),
a_img
,
b_img
,
c
.
data
,
g_times_l
=
True
)
return
evt
from
pyopencl.characterize
import
get_fast_inaccurate_build_options
lp
.
drive_timing_run
(
kernel_gen
,
queue
,
launcher
,
2
*
n
**
3
,
options
=
get_fast_inaccurate_build_options
(
ctx
.
devices
[
0
]))
if
__name__
==
"
__main__
"
:
image_matrix_mul_ilp
()
This diff is collapsed.
Click to expand it.
examples/sem_reagan.py
+
2
−
0
View file @
12bd253a
...
@@ -187,6 +187,8 @@ def test_tim3d_slab(ctx_factory):
...
@@ -187,6 +187,8 @@ def test_tim3d_slab(ctx_factory):
#knl = lp.precompute(knl, "us", ["i", "j"], within="... < lapr")
#knl = lp.precompute(knl, "us", ["i", "j"], within="... < lapr")
#knl = lp.precompute(knl, "ut", ["i", "j"], within="... < lapr")
#knl = lp.precompute(knl, "ut", ["i", "j"], within="... < lapr")
knl
=
lp
.
precompute
(
knl
,
"
lapt
"
,
[
""
,
"
j
"
])
# prefetch the derivative matrix
# prefetch the derivative matrix
knl
=
lp
.
add_prefetch
(
knl
,
"
D[:,:]
"
)
knl
=
lp
.
add_prefetch
(
knl
,
"
D[:,:]
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment