-
Andreas Klöckner authoredAndreas Klöckner authored
test_array.py 32.62 KiB
#! /usr/bin/env python
from __future__ import division, with_statement, absolute_import, print_function
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import sys
from six.moves import range
import pytest
import pyopencl as cl
import pyopencl.array as cl_array
import pyopencl.cltypes as cltypes
import pyopencl.tools as cl_tools
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
from pyopencl.clrandom import RanluxGenerator, PhiloxGenerator, ThreefryGenerator
_PYPY = cl._PYPY
# {{{ helpers
TO_REAL = {
np.dtype(np.complex64): np.float32,
np.dtype(np.complex128): np.float64
}
def general_clrand(queue, shape, dtype):
from pyopencl.clrandom import rand as clrand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = dtype.type(0).real.dtype
return clrand(queue, shape, real_dtype) + 1j*clrand(queue, shape, real_dtype)
else:
return clrand(queue, shape, dtype)
def make_random_array(queue, dtype, size):
from pyopencl.clrandom import rand
dtype = np.dtype(dtype)
if dtype.kind == "c":
real_dtype = TO_REAL[dtype]
return (rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
+ rand(queue, shape=(size,), dtype=real_dtype).astype(dtype)
* dtype.type(1j))
else:
return rand(queue, shape=(size,), dtype=dtype)
# }}}
# {{{ dtype-related
def test_basic_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand
size = 500
ary = (rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64)
+ rand(queue, shape=(size,), dtype=np.float32).astype(np.complex64) * 1j)
c = np.complex64(5+7j)
host_ary = ary.get()
assert la.norm((ary*c).get() - c*host_ary) < 1e-5 * la.norm(host_ary)
def test_mix_complex(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
size = 10
dtypes = [
(np.float32, np.complex64),
#(np.int32, np.complex64),
]
dev = context.devices[0]
if has_double_support(dev) and has_struct_arg_count_bug(dev) == "apple":
dtypes.extend([
(np.float32, np.float64),
])
elif has_double_support(dev):
dtypes.extend([
(np.float32, np.float64),
(np.float32, np.complex128),
(np.float64, np.complex64),
(np.float64, np.complex128),
])
from operator import add, mul, sub, truediv
for op in [add, sub, mul, truediv, pow]:
for dtype_a0, dtype_b0 in dtypes:
for dtype_a, dtype_b in [
(dtype_a0, dtype_b0),
(dtype_b0, dtype_a0),
]:
for is_scalar_a, is_scalar_b in [
(False, False),
(False, True),
(True, False),
]:
if is_scalar_a:
ary_a = make_random_array(queue, dtype_a, 1).get()[0]
host_ary_a = ary_a
else:
ary_a = make_random_array(queue, dtype_a, size)
host_ary_a = ary_a.get()
if is_scalar_b:
ary_b = make_random_array(queue, dtype_b, 1).get()[0]
host_ary_b = ary_b
else:
ary_b = make_random_array(queue, dtype_b, size)
host_ary_b = ary_b.get()
print(op, dtype_a, dtype_b, is_scalar_a, is_scalar_b)
dev_result = op(ary_a, ary_b).get()
host_result = op(host_ary_a, host_ary_b)
if host_result.dtype != dev_result.dtype:
# This appears to be a numpy bug, where we get
# served a Python complex that is really a
# smaller numpy complex.
print("HOST_DTYPE: %s DEV_DTYPE: %s" % (
host_result.dtype, dev_result.dtype))
dev_result = dev_result.astype(host_result.dtype)
err = la.norm(host_result-dev_result)/la.norm(host_result)
print(err)
correct = err < 1e-4
if not correct:
print(host_result)
print(dev_result)
print(host_result - dev_result)
assert correct
def test_pow_neg1_vs_inv(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
device = ctx.devices[0]
if not has_double_support(device):
from pytest import skip
skip("double precision not supported on %s" % device)
if has_struct_arg_count_bug(device) == "apple":
from pytest import xfail
xfail("apple struct arg counting broken")
a_dev = make_random_array(queue, np.complex128, 20000)
res1 = (a_dev ** (-1)).get()
res2 = (1/a_dev).get()
ref = 1/a_dev.get()
assert la.norm(res1-ref, np.inf) / la.norm(ref) < 1e-13
assert la.norm(res2-ref, np.inf) / la.norm(ref) < 1e-13
def test_vector_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.Array(queue, 100, dtype=cltypes.float4)
a_gpu.fill(cltypes.make_float4(0.0, 0.0, 1.0, 0.0))
a = a_gpu.get()
assert a.dtype == cltypes.float4
a_gpu = cl_array.zeros(queue, 100, dtype=cltypes.float4)
def test_absrealimag(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
def real(x):
return x.real
def imag(x):
return x.imag
def conj(x):
return x.conj()
n = 111
for func in [abs, real, imag, conj]:
for dtype in [np.int32, np.float32, np.complex64]:
print(func, dtype)
a = -make_random_array(queue, dtype, n)
host_res = func(a.get())
dev_res = func(a).get()
correct = np.allclose(dev_res, host_res)
if not correct:
print(dev_res)
print(host_res)
print(dev_res-host_res)
assert correct
def test_custom_type_zeros(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
if not (
queue._get_cl_version() >= (1, 2)
and cl.get_cl_header_version() >= (1, 2)):
pytest.skip("CL1.2 not available")
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "mmc_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 1000
z_dev = cl.array.zeros(queue, n, dtype=dtype)
z = z_dev.get()
assert np.array_equal(np.zeros(n, dtype), z)
def test_custom_type_fill(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.characterize import has_struct_arg_count_bug
if has_struct_arg_count_bug(queue.device):
pytest.skip("device has LLVM arg counting bug")
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
("pad", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "mmc_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 1000
z_dev = cl.array.empty(queue, n, dtype=dtype)
z_dev.fill(np.zeros((), dtype))
z = z_dev.get()
assert np.array_equal(np.zeros(n, dtype), z)
def test_custom_type_take_put(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
dtype = np.dtype([
("cur_min", np.int32),
("cur_max", np.int32),
])
from pyopencl.tools import get_or_register_dtype, match_dtype_to_c_struct
name = "tp_type"
dtype, c_decl = match_dtype_to_c_struct(queue.device, name, dtype)
dtype = get_or_register_dtype(name, dtype)
n = 100
z = np.empty(100, dtype)
z["cur_min"] = np.arange(n)
z["cur_max"] = np.arange(n)**2
z_dev = cl.array.to_device(queue, z)
ind = cl.array.arange(queue, n, step=3, dtype=np.int32)
z_ind_ref = z[ind.get()]
z_ind = z_dev[ind]
assert np.array_equal(z_ind.get(), z_ind_ref)
# }}}
# {{{ operators
def test_rmul_yields_right_type(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
two_a = 2*a_gpu
assert isinstance(two_a, cl_array.Array)
two_a = np.float32(2)*a_gpu
assert isinstance(two_a, cl_array.Array)
def test_pow_array(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, a_gpu).get()
assert (np.abs(a ** a - result) < 3e-3).all()
result = (a_gpu ** a_gpu).get()
assert (np.abs(pow(a, a) - result) < 3e-3).all()
def test_pow_number(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = pow(a_gpu, 2).get()
assert (np.abs(a ** 2 - result) < 1e-3).all()
def test_multiply(ctx_factory):
"""Test the muliplication of an array with a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
for sz in [10, 50000]:
for dtype, scalars in [
(np.float32, [2]),
(np.complex64, [2j]),
]:
for scalar in scalars:
a_gpu = make_random_array(queue, dtype, sz)
a = a_gpu.get()
a_mult = (scalar * a_gpu).get()
assert (a * scalar == a_mult).all()
def test_multiply_array(ctx_factory):
"""Test the multiplication of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, a)
a_squared = (b_gpu * a_gpu).get()
assert (a * a == a_squared).all()
def test_addition_array(ctx_factory):
"""Test the addition of two arrays."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
a_added = (a_gpu + a_gpu).get()
assert (a + a == a_added).all()
def test_addition_scalar(ctx_factory):
"""Test the addition of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
a_added = (7 + a_gpu).get()
assert (7 + a == a_added).all()
def test_substract_array(ctx_factory):
"""Test the substraction of two arrays."""
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
b = np.array([10, 20, 30, 40, 50,
60, 70, 80, 90, 100]).astype(np.float32)
context = ctx_factory()
queue = cl.CommandQueue(context)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
result = (a_gpu - b_gpu).get()
assert (a - b == result).all()
result = (b_gpu - a_gpu).get()
assert (b - a == result).all()
def test_substract_scalar(ctx_factory):
"""Test the substraction of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
#convert a to a gpu object
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu - 7).get()
assert (a - 7 == result).all()
result = (7 - a_gpu).get()
assert (7 - a == result).all()
def test_divide_scalar(ctx_factory):
"""Test the division of an array and a scalar."""
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
result = (a_gpu / 2).get()
assert (a / 2 == result).all()
result = (2 / a_gpu).get()
assert (np.abs(2 / a - result) < 1e-5).all()
def test_divide_array(ctx_factory):
"""Test the division of an array and a scalar. """
context = ctx_factory()
queue = cl.CommandQueue(context)
#test data
a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]).astype(np.float32)
b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]).astype(np.float32)
a_gpu = cl_array.to_device(queue, a)
b_gpu = cl_array.to_device(queue, b)
a_divide = (a_gpu / b_gpu).get()
assert (np.abs(a / b - a_divide) < 1e-3).all()
a_divide = (b_gpu / a_gpu).get()
assert (np.abs(b / a - a_divide) < 1e-3).all()
def test_bitwise(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: missing bitwise ops")
context = ctx_factory()
queue = cl.CommandQueue(context)
from itertools import product
dtypes = [np.dtype(t) for t in (np.int64, np.int32, np.int16, np.int8)]
from pyopencl.clrandom import rand as clrand
for a_dtype, b_dtype in product(dtypes, dtypes):
ary_len = 16
np.random.seed(10)
int32_min = np.iinfo(np.int32).min
int32_max = np.iinfo(np.int32).max
a_dev = clrand(
queue, (ary_len,), a=int32_min, b=1+int32_max, dtype=np.int64
).astype(a_dtype)
b_dev = clrand(
queue, (ary_len,), a=int32_min, b=1+int32_max, dtype=np.int64
).astype(b_dtype)
a = a_dev.get()
b = b_dev.get()
s = int((clrand(queue, (), a=int32_min, b=1+int32_max, dtype=np.int64)
.astype(b_dtype).get()))
import operator as o
for op in [o.and_, o.or_, o.xor]:
res_dev = op(a_dev, b_dev)
res = op(a, b)
assert (res_dev.get() == res).all()
res_dev = op(a_dev, s)
res = op(a, s)
assert (res_dev.get() == res).all()
res_dev = op(s, b_dev)
res = op(s, b)
assert (res_dev.get() == res).all()
for op in [o.iand, o.ior, o.ixor]:
res_dev = a_dev.copy()
op_res = op(res_dev, b_dev)
assert op_res is res_dev
res = a.copy()
op(res, b)
assert (res_dev.get() == res).all()
res_dev = a_dev.copy()
op_res = op(res_dev, s)
assert op_res is res_dev
res = a.copy()
op(res, s)
assert (res_dev.get() == res).all()
# Test unary ~
res_dev = ~a_dev
res = ~a
assert (res_dev.get() == res).all()
# }}}
# {{{ RNG
@pytest.mark.parametrize("rng_class",
[RanluxGenerator, PhiloxGenerator, ThreefryGenerator])
@pytest.mark.parametrize("ary_size", [300, 301, 302, 303, 10007])
def test_random_float_in_range(ctx_factory, rng_class, ary_size, plot_hist=False):
context = ctx_factory()
queue = cl.CommandQueue(context)
if has_double_support(context.devices[0]):
dtypes = [np.float32, np.float64]
else:
dtypes = [np.float32]
if rng_class is RanluxGenerator:
gen = rng_class(queue, 5120)
else:
gen = rng_class(context)
for dtype in dtypes:
print(dtype)
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran)
if plot_hist:
import matplotlib.pyplot as pt
pt.hist(ran.get(), 30)
pt.show()
assert (0 < ran.get()).all()
assert (ran.get() < 1).all()
if rng_class is RanluxGenerator:
gen.synchronize(queue)
ran = cl_array.zeros(queue, ary_size, dtype)
gen.fill_uniform(ran, a=4, b=7)
assert (4 < ran.get()).all()
assert (ran.get() < 7).all()
ran = gen.normal(queue, ary_size, dtype, mu=10, sigma=3)
if plot_hist:
import matplotlib.pyplot as pt
pt.hist(ran.get(), 30)
pt.show()
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
@pytest.mark.parametrize("rng_class",
[RanluxGenerator, PhiloxGenerator, ThreefryGenerator])
def test_random_int_in_range(ctx_factory, rng_class, dtype, plot_hist=False):
context = ctx_factory()
queue = cl.CommandQueue(context)
if rng_class is RanluxGenerator:
gen = rng_class(queue, 5120)
else:
gen = rng_class(context)
# if (dtype == np.int64
# and context.devices[0].platform.vendor.startswith("Advanced Micro")):
# pytest.xfail("AMD miscompiles 64-bit RNG math")
ran = gen.uniform(queue, (10000007,), dtype, a=200, b=300).get()
assert (200 <= ran).all()
assert (ran < 300).all()
print(np.min(ran), np.max(ran))
assert np.max(ran) > 295
if plot_hist:
from matplotlib import pyplot as pt
pt.hist(ran)
pt.show()
# }}}
# {{{ misc
def test_numpy_integer_shape(ctx_factory):
try:
list(np.int32(17))
except Exception:
pass
else:
from pytest import skip
skip("numpy implementation does not handle scalar correctly.")
context = ctx_factory()
queue = cl.CommandQueue(context)
cl_array.empty(queue, np.int32(17), np.float32)
cl_array.empty(queue, (np.int32(17), np.int32(17)), np.float32)
def test_len(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.float32)
a_cpu = cl_array.to_device(queue, a)
assert len(a_cpu) == 10
def test_stride_preservation(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.random.rand(3, 3)
at = a.T
print(at.flags.f_contiguous, at.flags.c_contiguous)
at_gpu = cl_array.to_device(queue, at)
print(at_gpu.flags.f_contiguous, at_gpu.flags.c_contiguous)
assert np.allclose(at_gpu.get(), at)
def test_nan_arithmetic(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
def make_nan_contaminated_vector(size):
shape = (size,)
a = np.random.randn(*shape).astype(np.float32)
from random import randrange
for i in range(size // 10):
a[randrange(0, size)] = float('nan')
return a
size = 1 << 20
a = make_nan_contaminated_vector(size)
a_gpu = cl_array.to_device(queue, a)
b = make_nan_contaminated_vector(size)
b_gpu = cl_array.to_device(queue, b)
ab = a * b
ab_gpu = (a_gpu * b_gpu).get()
assert (np.isnan(ab) == np.isnan(ab_gpu)).all()
def test_mem_pool_with_arrays(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool)
b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000
assert a_dev.allocator is mem_pool
assert b_dev.allocator is mem_pool
def test_view(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# same dtype
view = a_dev.view()
assert view.shape == a_dev.shape and view.dtype == a_dev.dtype
# larger dtype
view = a_dev.view(np.complex64)
assert view.shape == (8, 8) and view.dtype == np.complex64
# smaller dtype
view = a_dev.view(np.int16)
assert view.shape == (8, 32) and view.dtype == np.int16
def test_diff(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
ary_len = 20000
a_dev = clrand(queue, (ary_len,), dtype=np.float32)
a = a_dev.get()
err = la.norm(
(cl.array.diff(a_dev).get() - np.diff(a)))
assert err < 1e-4
def test_copy(ctx_factory):
context = ctx_factory()
queue1 = cl.CommandQueue(context)
queue2 = cl.CommandQueue(context)
# Test copy
arr = cl.array.zeros(queue1, 100, np.int32)
arr_copy = arr.copy()
assert (arr == arr_copy).all().get()
assert arr.data != arr_copy.data
assert arr_copy.queue is queue1
# Test queue association
arr_copy = arr.copy(queue=queue2)
assert arr_copy.queue is queue2
arr_copy = arr.copy(queue=None)
assert arr_copy.queue is None
arr_copy = arr.with_queue(None).copy(queue=queue1)
assert arr_copy.queue is queue1
# }}}
# {{{ slices, concatenation
def test_slice(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: spurious as_strided failure")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
tp = np.float32
ary_len = 20000
a_gpu = clrand(queue, (ary_len,), dtype=tp)
b_gpu = clrand(queue, (ary_len,), dtype=tp)
a = a_gpu.get()
b = b_gpu.get()
from random import randrange
for i in range(20):
start = randrange(ary_len)
end = randrange(start, ary_len)
a_gpu_slice = tp(2)*a_gpu[start:end]
a_slice = tp(2)*a[start:end]
assert la.norm(a_gpu_slice.get() - a_slice) == 0
for i in range(20):
start = randrange(ary_len)
end = randrange(start, ary_len)
a_gpu[start:end] = tp(2)*b[start:end]
a[start:end] = tp(2)*b[start:end]
assert la.norm(a_gpu.get() - a) == 0
for i in range(20):
start = randrange(ary_len)
end = randrange(start, ary_len)
a_gpu[start:end] = tp(2)*b_gpu[start:end]
a[start:end] = tp(2)*b[start:end]
assert la.norm(a_gpu.get() - a) == 0
def test_concatenate(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_dev = clrand(queue, (5, 15, 20), dtype=np.float32)
b_dev = clrand(queue, (4, 15, 20), dtype=np.float32)
c_dev = clrand(queue, (3, 15, 20), dtype=np.float32)
a = a_dev.get()
b = b_dev.get()
c = c_dev.get()
cat_dev = cl.array.concatenate((a_dev, b_dev, c_dev))
cat = np.concatenate((a, b, c))
assert la.norm(cat - cat_dev.get()) == 0
# }}}
# {{{ conditionals, any, all
def test_comparisons(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
ary_len = 20000
a_dev = clrand(queue, (ary_len,), dtype=np.float32)
b_dev = clrand(queue, (ary_len,), dtype=np.float32)
a = a_dev.get()
b = b_dev.get()
import operator as o
for op in [o.eq, o.ne, o.le, o.lt, o.ge, o.gt]:
res_dev = op(a_dev, b_dev)
res = op(a, b)
assert (res_dev.get() == res).all()
res_dev = op(a_dev, 0)
res = op(a, 0)
assert (res_dev.get() == res).all()
res_dev = op(0, b_dev)
res = op(0, b)
assert (res_dev.get() == res).all()
def test_any_all(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
ary_len = 20000
a_dev = cl_array.zeros(queue, (ary_len,), dtype=np.int8)
assert not a_dev.all().get()
assert not a_dev.any().get()
a_dev[15213] = 1
assert not a_dev.all().get()
assert a_dev.any().get()
a_dev.fill(1)
assert a_dev.all().get()
assert a_dev.any().get()
# }}}
def test_map_to_host(ctx_factory):
if _PYPY:
pytest.skip("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
if context.devices[0].type & cl.device_type.GPU:
mf = cl.mem_flags
allocator = cl_tools.DeferredAllocator(
context, mf.READ_WRITE | mf.ALLOC_HOST_PTR)
else:
allocator = None
a_dev = cl_array.zeros(queue, (5, 6, 7,), dtype=np.float32, allocator=allocator)
a_dev[3, 2, 1] = 10
a_host = a_dev.map_to_host()
a_host[1, 2, 3] = 10
a_host_saved = a_host.copy()
a_host.base.release(queue)
a_dev.finish()
print("DEV[HOST_WRITE]", a_dev.get()[1, 2, 3])
print("HOST[DEV_WRITE]", a_host_saved[3, 2, 1])
assert (a_host_saved == a_dev.get()).all()
def test_view_and_strides(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
return
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
x = clrand(queue, (5, 10), dtype=np.float32)
y = x[:3, :5]
yv = y.view()
assert yv.shape == y.shape
assert yv.strides == y.strides
with pytest.raises(AssertionError):
assert (yv.get() == x.get()[:3, :5]).all()
def test_meshmode_view(ctx_factory):
if _PYPY:
# https://bitbucket.org/pypy/numpy/issue/28/indexerror-on-ellipsis-slice
pytest.xfail("numpypy bug #28")
context = ctx_factory()
queue = cl.CommandQueue(context)
n = 2
result = cl.array.empty(queue, (2, n*6), np.float32)
def view(z):
return z[..., n*3:n*6].reshape(z.shape[:-1] + (n, 3))
result = result.with_queue(queue)
result.fill(0)
view(result)[0].fill(1)
view(result)[1].fill(1)
x = result.get()
assert (view(x) == 1).all()
def test_event_management(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
x = clrand(queue, (5, 10), dtype=np.float32)
assert len(x.events) == 1, len(x._events)
x.finish()
assert len(x.events) == 0
y = x+x
assert len(y.events) == 1
y = x*x
assert len(y.events) == 1
y = 2*x
assert len(y.events) == 1
y = 2/x
assert len(y.events) == 1
y = x/2
assert len(y.events) == 1
y = x**2
assert len(y.events) == 1
y = 2**x
assert len(y.events) == 1
for i in range(10):
x.fill(0)
assert len(x.events) == 10
for i in range(1000):
x.fill(0)
assert len(x.events) < 100
def test_reshape(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a = np.arange(128).reshape(8, 16).astype(np.float32)
a_dev = cl_array.to_device(queue, a)
# different ways to specify the shape
a_dev.reshape(4, 32)
a_dev.reshape((4, 32))
a_dev.reshape([4, 32])
# using -1 as unknown dimension
assert a_dev.reshape(-1, 32).shape == (4, 32)
assert a_dev.reshape((32, -1)).shape == (32, 4)
assert a_dev.reshape(((8, -1, 4))).shape == (8, 4, 4)
import pytest
with pytest.raises(ValueError):
a_dev.reshape(-1, -1, 4)
def test_skip_slicing(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
a_host = np.arange(16).reshape((4, 4))
b_host = a_host[::3]
a = cl_array.to_device(queue, a_host)
b = a[::3]
assert b.shape == b_host.shape
assert np.array_equal(b[1].get(), b_host[1])
def test_transpose(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: no array creation from __array_interface__")
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (10, 20, 30), dtype=np.float32)
a = a_gpu.get()
# FIXME: not contiguous
#assert np.allclose(a_gpu.transpose((1,2,0)).get(), a.transpose((1,2,0)))
assert np.array_equal(a_gpu.T.get(), a.T)
def test_newaxis(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
from pyopencl.clrandom import rand as clrand
a_gpu = clrand(queue, (10, 20, 30), dtype=np.float32)
a = a_gpu.get()
b_gpu = a_gpu[:, np.newaxis]
b = a[:, np.newaxis]
assert b_gpu.shape == b.shape
for i in range(b.ndim):
if b.shape[i] > 1:
assert b_gpu.strides[i] == b.strides[i]
def test_squeeze(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
shape = (40, 2, 5, 100)
a_cpu = np.random.random(size=shape)
a_gpu = cl_array.to_device(queue, a_cpu)
# Slice with length 1 on dimensions 0 and 1
a_gpu_slice = a_gpu[0:1, 1:2, :, :]
assert a_gpu_slice.shape == (1, 1, shape[2], shape[3])
assert a_gpu_slice.flags.c_contiguous
# Squeeze it and obtain contiguity
a_gpu_squeezed_slice = a_gpu[0:1, 1:2, :, :].squeeze()
assert a_gpu_squeezed_slice.shape == (shape[2], shape[3])
assert a_gpu_squeezed_slice.flags.c_contiguous
# Check that we get the original values out
#assert np.all(a_gpu_slice.get().ravel() == a_gpu_squeezed_slice.get().ravel())
# Slice with length 1 on dimensions 2
a_gpu_slice = a_gpu[:, :, 2:3, :]
assert a_gpu_slice.shape == (shape[0], shape[1], 1, shape[3])
assert not a_gpu_slice.flags.c_contiguous
# Squeeze it, but no contiguity here
a_gpu_squeezed_slice = a_gpu[:, :, 2:3, :].squeeze()
assert a_gpu_squeezed_slice.shape == (shape[0], shape[1], shape[3])
assert not a_gpu_squeezed_slice.flags.c_contiguous
# Check that we get the original values out
#assert np.all(a_gpu_slice.get().ravel() == a_gpu_squeezed_slice.get().ravel())
def test_fancy_fill(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: multi value setting is not supported")
context = ctx_factory()
queue = cl.CommandQueue(context)
numpy_dest = np.zeros((4,), np.int32)
numpy_idx = np.arange(3, dtype=np.int32)
numpy_src = np.arange(8, 9, dtype=np.int32)
numpy_dest[numpy_idx] = numpy_src
cl_dest = cl_array.zeros(queue, (4,), np.int32)
cl_idx = cl_array.arange(queue, 3, dtype=np.int32)
cl_src = cl_array.arange(queue, 8, 9, dtype=np.int32)
cl_dest[cl_idx] = cl_src
assert np.all(numpy_dest == cl_dest.get())
def test_fancy_indexing(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: multi value setting is not supported")
context = ctx_factory()
queue = cl.CommandQueue(context)
numpy_dest = np.zeros((4,), np.int32)
numpy_idx = np.arange(3, 0, -1, dtype=np.int32)
numpy_src = np.arange(8, 11, dtype=np.int32)
numpy_dest[numpy_idx] = numpy_src
cl_dest = cl_array.zeros(queue, (4,), np.int32)
cl_idx = cl_array.arange(queue, 3, 0, -1, dtype=np.int32)
cl_src = cl_array.arange(queue, 8, 11, dtype=np.int32)
cl_dest[cl_idx] = cl_src
assert np.all(numpy_dest == cl_dest.get())
cl_idx[1] = 3
cl_idx[2] = 2
numpy_idx[1] = 3
numpy_idx[2] = 2
numpy_dest[numpy_idx] = numpy_src
cl_dest[cl_idx] = cl_src
assert np.all(numpy_dest == cl_dest.get())
def test_multi_put(ctx_factory):
if _PYPY:
pytest.xfail("numpypy: multi value setting is not supported")
context = ctx_factory()
queue = cl.CommandQueue(context)
cl_arrays = [
cl_array.arange(queue, 0, 3, dtype=np.float32)
for i in range(1, 10)
]
idx = cl_array.arange(queue, 0, 6, dtype=np.int32)
out_arrays = [
cl_array.zeros(queue, (10,), np.float32)
for i in range(9)
]
out_compare = [np.zeros((10,), np.float32) for i in range(9)]
for i, ary in enumerate(out_compare):
ary[idx.get()] = np.arange(0, 6, dtype=np.float32)
cl_array.multi_put(cl_arrays, idx, out=out_arrays)
assert np.all(np.all(out_compare[i] == out_arrays[i].get()) for i in range(9))
if __name__ == "__main__":
# make sure that import failures get reported, instead of skipping the
# tests.
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from pytest import main
main([__file__])
# vim: filetype=pyopencl:fdm=marker