-
Emmanuel QUEMENER authoredEmmanuel QUEMENER authored
NBody.py 29.16 KiB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
NBody Demonstrator implemented in OpenCL, rendering OpenGL
By default, rendering in OpenGL is disabled. Add -g option to activate.
Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
Thanks to Andreas Klockner for PyOpenCL:
http://mathema.tician.de/software/pyopencl
"""
import getopt
import sys
import time
import numpy as np
import pyopencl as cl
import pyopencl.array as cl_array
from numpy.random import randint as nprnd
import string, sys
from OpenGL.GL import *
from OpenGL.GLUT import *
def DictionariesAPI():
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3}
Computing={'FP32':0,'FP64':1}
Interaction={'Force':0,'Potential':1}
Artevasion={'None':0,'NegExp':1,'CorRad':2}
return(Marsaglia,Computing,Interaction,Artevasion)
BlobOpenCL= """
#define TFP32 0
#define TFP64 1
#define TFORCE 0
#define TPOTENTIAL 1
#define NONE 0
#define NEGEXP 1
#define CORRAD 2
#if TYPE == TFP32
#define MYFLOAT4 float4
#define MYFLOAT8 float8
#define MYFLOAT float
#define DISTANCE fast_distance
#else
#define MYFLOAT4 double4
#define MYFLOAT8 double8
#define MYFLOAT double
#define DISTANCE distance
#if defined(cl_khr_fp64) // Khronos extension available?
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
#endif
#define znew ((zmwc=36969*(zmwc&65535)+(zmwc>>16))<<16)
#define wnew ((wmwc=18000*(wmwc&65535)+(wmwc>>16))&65535)
#define MWC (znew+wnew)
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
#define CONG (jcong=69069*jcong+1234567)
#define KISS ((MWC^CONG)+SHR3)
#define MWCfp (MYFLOAT)(MWC * 2.3283064365386963e-10f)
#define KISSfp (MYFLOAT)(KISS * 2.3283064365386963e-10f)
#define SHR3fp (MYFLOAT)(SHR3 * 2.3283064365386963e-10f)
#define CONGfp (MYFLOAT)(CONG * 2.3283064365386963e-10f)
#define PI (MYFLOAT)3.141592653589793238e0f
#define SMALL_NUM (MYFLOAT)1.e-9f
#define CoreRadius (MYFLOAT)(1.e0f)
// Create my own Distance implementation: distance buggy on Oland AMD chipset
MYFLOAT MyDistance(MYFLOAT4 n,MYFLOAT4 m)
{
private MYFLOAT x2,y2,z2;
x2=n.s0-m.s0;
x2*=x2;
y2=n.s1-m.s1;
y2*=y2;
z2=n.s2-m.s2;
z2*=z2;
return(sqrt(x2+y2+z2));
}
// Potential between 2 m,n bodies
MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
#if ARTEVASION == NEGEXP
// Add exp(-r) to numerator to avoid divergence for low distances
{
MYFLOAT r=DISTANCE(n,m);
return((-1.e0f+exp(-r))/r);
}
#elif ARTEVASION == CORRAD
// Add Core Radius to avoid divergence for low distances
{
MYFLOAT r=DISTANCE(n,m);
return(-1.e0f/sqrt(r*r+CoreRadius*CoreRadius));
}
#else
// Classical potential in 1/r
{
// return((MYFLOAT)(-1.e0f)/(MyDistance(m,n)));
return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
}
#endif
// Interaction based of Force as gradient of Potential
MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
#if INTERACTION == TFORCE
#if ARTEVASION == NEGEXP
// Force gradient of potential, set as (1-exp(-r))/r
{
private MYFLOAT r=MyDistance(n,m);
private MYFLOAT num=1.e0f+exp(-r)*(r-1.e0f);
return((n-m)*num/(MYFLOAT)(r*r*r));
}
#elif ARTEVASION == CORRAD
// Force gradient of potential, (Core Radius) set as 1/sqrt(r**2+CoreRadius**2)
{
private MYFLOAT r=MyDistance(n,m);
private MYFLOAT den=sqrt(r*r+CoreRadius*CoreRadius);
return((n-m)/(MYFLOAT)(den*den*den));
}
#else
// Simplest implementation of force (equals to acceleration)
// seems to bo bad (numerous artevasions)
// MYFLOAT4 InteractionForce(MYFLOAT4 m,MYFLOAT4 n)
{
private MYFLOAT r=MyDistance(n,m);
return((n-m)/(MYFLOAT)(r*r*r));
}
#endif
#else
// Force definited as gradient of potential
// Estimate potential and proximate potential to estimate force
{
// 1/1024 seems to be a good factor: larger one provides bad results
private MYFLOAT epsilon=(MYFLOAT)(1.e0f/1024);
private MYFLOAT4 er=normalize(n-m);
private MYFLOAT4 dr=er*(MYFLOAT)epsilon;
return(er/epsilon*(PairPotential(m,n)-PairPotential(m+dr,n)));
}
#endif
MYFLOAT AtomicPotential(__global MYFLOAT4* clDataX,int gid)
{
private MYFLOAT potential=(MYFLOAT)0.e0f;
private MYFLOAT4 x=clDataX[gid];
for (int i=0;i<get_global_size(0);i++)
{
if (gid != i)
potential+=PairPotential(x,clDataX[i]);
}
barrier(CLK_GLOBAL_MEM_FENCE);
return(potential);
}
MYFLOAT AtomicPotentialCoM(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int gid)
{
return(PairPotential(clDataX[gid],clCoM[0]));
}
// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
MYFLOAT8 AtomicRungeKutta(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
private MYFLOAT4 a0,v0,x0,a1,v1,x1,a2,v2,x2,a3,v3,x3,a4,v4,x4,xf,vf;
MYFLOAT4 DT=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);
a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
v0=(MYFLOAT4)clDataInV[gid];
x0=(MYFLOAT4)clDataInX[gid];
int N = get_global_size(0);
for (private int i=0;i<N;i++)
{
if (gid != i)
a0+=Interaction(x0,clDataInX[i]);
}
a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
v1=a0*dt+v0;
x1=v0*dt+x0;
for (private int j=0;j<N;j++)
{
if (gid != j)
a1+=Interaction(x1,clDataInX[j]);
}
a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
v2=a1*(MYFLOAT)(dt/2.e0f)+v0;
x2=v1*(MYFLOAT)(dt/2.e0f)+x0;
for (private int k=0;k<N;k++)
{
if (gid != k)
a2+=Interaction(x2,clDataInX[k]);
}
a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
v3=a2*(MYFLOAT)(dt/2.e0f)+v0;
x3=v2*(MYFLOAT)(dt/2.e0f)+x0;
for (private int l=0;l<N;l++)
{
if (gid != l)
a3+=Interaction(x3,clDataInX[l]);
}
a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
v4=a3*dt+v0;
x4=v3*dt+x0;
for (private int m=0;m<N;m++)
{
if (gid != m)
a4+=Interaction(x4,clDataInX[m]);
}
xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}
MYFLOAT8 AtomicHeun(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
private MYFLOAT4 x0,v0,a0,x1,v1,a1,xf,vf;
MYFLOAT4 Dt=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);
x0=(MYFLOAT4)clDataInX[gid];
v0=(MYFLOAT4)clDataInV[gid];
a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
for (private int i=0;i<get_global_size(0);i++)
{
if (gid != i)
a0+=Interaction(x0,clDataInX[i]);
}
a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
//v1=v0+dt*a0;
//x1=x0+dt*v0;
v1=dt*a0+v0;
x1=dt*v0+x0;
for (private int j=0;j<get_global_size(0);j++)
{
if (gid != j)
a1+=Interaction(x1,clDataInX[j]);
}
vf=v0+dt*(a0+a1)/(MYFLOAT)2.e0f;
xf=x0+dt*(v0+v1)/(MYFLOAT)2.e0f;
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}
MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
MYFLOAT4 x0,v0,a,xf,vf;
x0=(MYFLOAT4)clDataInX[gid];
v0=(MYFLOAT4)clDataInV[gid];
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
for (private int i=0;i<get_global_size(0);i++)
{
if (gid != i)
a+=Interaction(x0,clDataInX[i]);
}
vf=v0+dt*a;
xf=x0+dt*vf;
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}
MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
MYFLOAT4 x0,v0,a,xf,vf;
x0=(MYFLOAT4)clDataInX[gid];
v0=(MYFLOAT4)clDataInV[gid];
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
for (private int i=0;i<get_global_size(0);i++)
{
if (gid != i)
a+=Interaction(x0,clDataInX[i]);
}
vf=v0+dt*a;
xf=x0+dt*v0;
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}
__kernel void InBallSplutterPoints(__global MYFLOAT4* clDataX,
MYFLOAT diameter,uint seed_z,uint seed_w)
{
private int gid=get_global_id(0);
private uint zmwc=seed_z+gid;
private uint wmwc=seed_w+(gid+1)%2;
private MYFLOAT Heat;
for (int i=0;i<gid;i++)
{
Heat=MWCfp;
}
// More accurate distribution based on spherical coordonates
// Disactivated because of AMD Oland GPU crash on launch
// private MYFLOAT Radius,Theta,Phi,PosX,PosY,PosZ,SinTheta;
// Radius=MWCfp*diameter/2.e0f;
// Theta=(MYFLOAT)acos((float)(-2.e0f*MWCfp+1.0e0f));
// Phi=(MYFLOAT)(2.e0f*PI*MWCfp);
// SinTheta=sin((float)Theta);
// PosX=cos((float)Phi)*Radius*SinTheta;
// PosY=sin((float)Phi)*Radius*SinTheta;
// PosZ=cos((float)Theta)*Radius;
// clDataX[gid]=(MYFLOAT4)(PosX,PosY,PosZ,0.e0f);
private MYFLOAT Radius=diameter/2.e0f;
private MYFLOAT Length=diameter;
private MYFLOAT4 Position;
while (Length>Radius) {
Position=(MYFLOAT4)((MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,0.e0f);
Length=(MYFLOAT)length((MYFLOAT4)Position);
}
clDataX[gid]=Position;
barrier(CLK_GLOBAL_MEM_FENCE);
}
__kernel void InBoxSplutterPoints(__global MYFLOAT4* clDataX, MYFLOAT box,
uint seed_z,uint seed_w)
{
int gid=get_global_id(0);
uint zmwc=seed_z+gid;
uint wmwc=seed_w-gid;
private MYFLOAT Heat;
for (int i=0;i<gid;i++)
{
Heat=MWCfp;
}
clDataX[gid]=(MYFLOAT4)((MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,0.e0f);
barrier(CLK_GLOBAL_MEM_FENCE);
}
__kernel void SplutterStress(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
{
int gid = get_global_id(0);
MYFLOAT N = (MYFLOAT)get_global_size(0);
uint zmwc=seed_z+(uint)gid;
uint wmwc=seed_w-(uint)gid;
MYFLOAT4 CrossVector,SpeedVector,FromCoM;
MYFLOAT Heat,ThetaA,PhiA,ThetaB,PhiB,Length,tA,tB,Polar;
for (int i=0;i<gid;i++)
{
Heat=MWCfp;
}
// cast to float for sin,cos are NEEDED by Mesa FP64 implementation!
// Implemention on AMD Oland are probably broken in float
FromCoM=(MYFLOAT4)(clDataX[gid]-clCoM[0]);
Length=length(FromCoM);
//Theta=acos(FromCoM.z/Length);
//Phi=atan(FromCoM.y/FromCoM.x);
// First tangential vector to sphere of length radius
ThetaA=acos(FromCoM.x/Length)+5.e-1f*PI;
PhiA=atan(FromCoM.y/FromCoM.z);
// Second tangential vector to sphere of length radius
ThetaB=acos((float)(FromCoM.x/Length));
PhiB=atan((float)(FromCoM.y/FromCoM.z))+5.e-1f*PI;
// (x,y) random coordonates to plane tangential to sphere
Polar=MWCfp*2.e0f*PI;
tA=cos((float)Polar);
tB=sin((float)Polar);
// Exception for 2 particules to ovoid shifting
if (get_global_size(0)==2) {
CrossVector=(MYFLOAT4)(1.e0f,1.e0f,1.e0f,0.e0f);
} else {
CrossVector.s0=tA*cos((float)ThetaA)+tB*cos((float)ThetaB);
CrossVector.s1=tA*sin((float)ThetaA)*sin((float)PhiA)+tB*sin((float)ThetaB)*sin((float)PhiB);
CrossVector.s2=tA*sin((float)ThetaA)*cos((float)PhiA)+tB*sin((float)ThetaB)*cos((float)PhiB);
CrossVector.s3=0.e0f;
}
if (velocity<SMALL_NUM) {
SpeedVector=(MYFLOAT4)normalize(cross(FromCoM,CrossVector))*sqrt((-AtomicPotential(clDataX,gid)/(MYFLOAT)2.e0f));
}
else
{
SpeedVector=(MYFLOAT4)((MWCfp-5e-1f)*velocity,(MWCfp-5e-1f)*velocity,
(MWCfp-5e-1f)*velocity,0.e0f);
}
clDataV[gid]=SpeedVector;
barrier(CLK_GLOBAL_MEM_FENCE);
}
__kernel void RungeKutta(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
private int gid = get_global_id(0);
private MYFLOAT8 clDataGid;
clDataGid=AtomicRungeKutta(clDataX,clDataV,gid,h);
barrier(CLK_GLOBAL_MEM_FENCE);
clDataX[gid]=clDataGid.s0123;
clDataV[gid]=clDataGid.s4567;
}
__kernel void Heun(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
private int gid = get_global_id(0);
private MYFLOAT8 clDataGid;
clDataGid=AtomicHeun(clDataX,clDataV,gid,h);
barrier(CLK_GLOBAL_MEM_FENCE);
clDataX[gid]=clDataGid.s0123;
clDataV[gid]=clDataGid.s4567;
}
__kernel void ImplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
private int gid = get_global_id(0);
private MYFLOAT8 clDataGid;
clDataGid=AtomicImplicitEuler(clDataX,clDataV,gid,h);
barrier(CLK_GLOBAL_MEM_FENCE);
clDataX[gid]=clDataGid.s0123;
clDataV[gid]=clDataGid.s4567;
}
__kernel void ExplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
private int gid = get_global_id(0);
private MYFLOAT8 clDataGid;
clDataGid=AtomicExplicitEuler(clDataX,clDataV,gid,h);
barrier(CLK_GLOBAL_MEM_FENCE);
clDataX[gid]=clDataGid.s0123;
clDataV[gid]=clDataGid.s4567;
}
__kernel void CoMPotential(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
{
int gid = get_global_id(0);
clPotential[gid]=PairPotential(clDataX[gid],clCoM[0]);
}
__kernel void Potential(__global MYFLOAT4* clDataX,__global MYFLOAT* clPotential)
{
int gid = get_global_id(0);
MYFLOAT potential=(MYFLOAT)0.e0f;
MYFLOAT4 x=clDataX[gid];
for (int i=0;i<get_global_size(0);i++)
{
if (gid != i)
potential+=PairPotential(x,clDataX[i]);
}
barrier(CLK_GLOBAL_MEM_FENCE);
clPotential[gid]=potential*(MYFLOAT)5.e-1f;
}
__kernel void CenterOfMass(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int Size)
{
MYFLOAT4 CoM=clDataX[0];
for (int i=1;i<Size;i++)
{
CoM+=clDataX[i];
}
barrier(CLK_GLOBAL_MEM_FENCE);
clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0.e0f)/(MYFLOAT)Size;
}
__kernel void Kinetic(__global MYFLOAT4* clDataV,__global MYFLOAT* clKinetic)
{
int gid = get_global_id(0);
barrier(CLK_GLOBAL_MEM_FENCE);
MYFLOAT d=(MYFLOAT)length(clDataV[gid]);
clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)(d*d);
}
"""
def MainOpenCL(clDataX,clDataV,Step,Method):
time_start=time.time()
if Method=="RungeKutta":
CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clDataX,clDataV,Step)
elif Method=="ExplicitEuler":
CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step)
elif Method=="Heun":
CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clDataX,clDataV,Step)
else:
CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step)
CLLaunch.wait()
Elapsed=time.time()-time_start
return(Elapsed)
def display(*args):
global MyDataX,MyDataV,clDataX,clDataV,Step,Method,Number,Iterations,Durations,Verbose,SpeedRendering
glClearColor(0.0, 0.0, 0.0, 0.0)
glClear(GL_COLOR_BUFFER_BIT)
glColor3f(1.0,1.0,1.0)
Elapsed=MainOpenCL(clDataX,clDataV,Step,Method)
if SpeedRendering:
cl.enqueue_copy(queue, MyDataV, clDataV)
MyDataV.reshape(Number,4)[:,3]=1
glVertexPointerf(MyDataV.reshape(Number,4))
else:
cl.enqueue_copy(queue, MyDataX, clDataX)
MyDataX.reshape(Number,4)[:,3]=1
glVertexPointerf(MyDataX.reshape(Number,4))
if Verbose:
print("Positions for #%s iteration: %s" % (Iterations,MyDataX))
else:
sys.stdout.write('.')
sys.stdout.flush()
Durations=np.append(Durations,MainOpenCL(clDataX,clDataV,Step,Method))
glEnableClientState(GL_VERTEX_ARRAY)
glDrawArrays(GL_POINTS, 0, Number)
glDisableClientState(GL_VERTEX_ARRAY)
glFlush()
Iterations+=1
glutSwapBuffers()
def halt():
pass
def keyboard(k,x,y):
global ViewRZ,SpeedRendering
LC_Z = as_8_bit( 'z' )
UC_Z = as_8_bit( 'Z' )
Plus = as_8_bit( '+' )
Minus = as_8_bit( '-' )
Switch = as_8_bit( 's' )
Zoom=1
if k == LC_Z:
ViewRZ += 1.0
elif k == UC_Z:
ViewRZ -= 1.0
elif k == Plus:
Zoom *= 2.0
elif k == Minus:
Zoom /= 2.0
elif k == Switch:
if SpeedRendering:
SpeedRendering=False
else:
SpeedRendering=True
elif ord(k) == 27: # Escape
glutLeaveMainLoop()
return(False)
else:
return
glRotatef(ViewRZ, 0.0, 0.0, 1.0)
glScalef(Zoom,Zoom,Zoom)
glutPostRedisplay()
def special(k,x,y):
global ViewRX, ViewRY
Step=1.
if k == GLUT_KEY_UP:
ViewRX += Step
elif k == GLUT_KEY_DOWN:
ViewRX -= Step
elif k == GLUT_KEY_LEFT:
ViewRY += Step
elif k == GLUT_KEY_RIGHT:
ViewRY -= Step
else:
return
glRotatef(ViewRX, 1.0, 0.0, 0.0)
glRotatef(ViewRY, 0.0, 1.0, 0.0)
glutPostRedisplay()
def setup_viewport():
global SizeOfBox
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glOrtho(-SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox)
glutPostRedisplay()
def reshape(w, h):
glViewport(0, 0, w, h)
setup_viewport()
if __name__=='__main__':
global Number,Step,clDataX,clDataV,MyDataX,MyDataV,Method,SizeOfBox,Iterations,Verbose,Durations
# ValueType
ValueType='FP32'
class MyFloat(np.float32):pass
# clType8=cl_array.vec.float8
# Set defaults values
np.set_printoptions(precision=2)
# Id of Device : 1 is for first find !
Device=0
# Number of bodies is integer
Number=2
# Number of iterations (for standalone execution)
Iterations=10
# Size of shape
SizeOfShape=MyFloat(1.)
# Initial velocity of particules
Velocity=MyFloat(1.)
# Step
Step=MyFloat(1./32)
# Method of integration
Method='ImplicitEuler'
# InitialRandom
InitialRandom=False
# RNG Marsaglia Method
RNG='MWC'
# Viriel Distribution of stress
VirielStress=True
# Verbose
Verbose=False
# OpenGL real time rendering
OpenGL=False
# Speed rendering
SpeedRendering=False
# Counter ArtEvasions Measures (artefact evasion)
CoArEv='None'
# Shape to distribute
Shape='Ball'
# Type of Interaction
InterType='Force'
HowToUse='%s -h [Help] -r [InitialRandom] -g [OpenGL] -e [VirielStress] -o [Verbose] -p [Potential] -x <None|NegExp|CorRad> -d <DeviceId> -n <NumberOfParticules> -i <Iterations> -z <SizeOfBoxOrBall> -v <Velocity> -s <Step> -b <Ball|Box> -m <ImplicitEuler|RungeKutta|ExplicitEuler|Heun> -t <FP32|FP64>'
try:
opts, args = getopt.getopt(sys.argv[1:],"rpgehod:n:i:z:v:s:m:t:b:x:",["random","potential","coarev","opengl","viriel","verbose","device=","number=","iterations=","size=","velocity=","step=","method=","valuetype=","shape="])
except getopt.GetoptError:
print(HowToUse % sys.argv[0])
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print(HowToUse % sys.argv[0])
print("\nInformations about devices detected under OpenCL:")
try:
Id=0
for platform in cl.get_platforms():
for device in platform.get_devices():
# Failed now because of POCL implementation
#deviceType=cl.device_type.to_string(device.type)
deviceType="xPU"
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
Id=Id+1
sys.exit()
except ImportError:
print("Your platform does not seem to support OpenCL")
sys.exit()
elif opt in ("-t", "--valuetype"):
if arg=='FP64':
class MyFloat(np.float64): pass
else:
class MyFloat(np.float32):pass
ValueType = arg
elif opt in ("-d", "--device"):
Device=int(arg)
elif opt in ("-m", "--method"):
Method=arg
elif opt in ("-b", "--shape"):
Shape=arg
if Shape!='Ball' or Shape!='Box':
print('Wrong argument: set to Ball')
elif opt in ("-n", "--number"):
Number=int(arg)
elif opt in ("-i", "--iterations"):
Iterations=int(arg)
elif opt in ("-z", "--size"):
SizeOfShape=MyFloat(arg)
elif opt in ("-v", "--velocity"):
Velocity=MyFloat(arg)
VirielStress=False
elif opt in ("-s", "--step"):
Step=MyFloat(arg)
elif opt in ("-r", "--random"):
InitialRandom=True
elif opt in ("-c", "--check"):
CheckEnergies=True
elif opt in ("-e", "--viriel"):
VirielStress=True
elif opt in ("-g", "--opengl"):
OpenGL=True
elif opt in ("-p", "--potential"):
InterType='Potential'
elif opt in ("-x", "--coarev"):
CoArEv=arg
elif opt in ("-o", "--verbose"):
Verbose=True
SizeOfShape=np.sqrt(MyFloat(SizeOfShape*Number))
Velocity=MyFloat(Velocity)
Step=MyFloat(Step)
print("Device choosed : %s" % Device)
print("Number of particules : %s" % Number)
print("Size of Shape : %s" % SizeOfShape)
print("Initial velocity : %s" % Velocity)
print("Step of iteration : %s" % Step)
print("Number of iterations : %s" % Iterations)
print("Method of resolution : %s" % Method)
print("Initial Random for RNG Seed : %s" % InitialRandom)
print("ValueType is : %s" % ValueType)
print("Viriel distribution of stress : %s" % VirielStress)
print("OpenGL real time rendering : %s" % OpenGL)
print("Speed rendering : %s" % SpeedRendering)
print("Interaction type : %s" % InterType)
print("Counter Artevasion type : %s" % CoArEv)
# Create Numpy array of CL vector with 8 FP32
MyCoM = np.zeros(4,dtype=MyFloat)
MyDataX = np.zeros(Number*4, dtype=MyFloat)
MyDataV = np.zeros(Number*4, dtype=MyFloat)
MyPotential = np.zeros(Number, dtype=MyFloat)
MyKinetic = np.zeros(Number, dtype=MyFloat)
Marsaglia,Computing,Interaction,Artevasion=DictionariesAPI()
# Scan the OpenCL arrays
Id=0
HasXPU=False
for platform in cl.get_platforms():
for device in platform.get_devices():
if Id==Device:
PlatForm=platform
XPU=device
print("CPU/GPU selected: ",device.name.lstrip())
print("Platform selected: ",platform.name)
HasXPU=True
Id+=1
if HasXPU==False:
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1))
sys.exit()
# Create Context
try:
ctx = cl.Context([XPU])
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE)
except:
print("Crash during context creation")
# Build all routines used for the computing
#BuildOptions="-cl-mad-enable -cl-kernel-arg-info -cl-fast-relaxed-math -cl-std=CL1.2 -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i -DINTERACTION=%i -DARTEVASION=%i" % (Marsaglia[RNG],Computing[ValueType],Interaction[InterType],Artevasion[CoArEv])
if 'Intel' in PlatForm.name or 'Experimental' in PlatForm.name or 'Clover' in PlatForm.name or 'Portable' in PlatForm.name :
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions)
else:
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
mf = cl.mem_flags
# Read/Write approach for buffering
clDataX = cl.Buffer(ctx, mf.READ_WRITE, MyDataX.nbytes)
clDataV = cl.Buffer(ctx, mf.READ_WRITE, MyDataV.nbytes)
clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes)
clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes)
clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes)
# Write/HostPointer approach for buffering
# clDataX = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataX)
# clDataV = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataV)
# clPotential = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyPotential)
# clKinetic = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyKinetic)
# clCoM = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyCoM)
print('All particles superimposed.')
# Set particles to RNG points
if InitialRandom:
seed_w=np.uint32(nprnd(2**32))
seed_z=np.uint32(nprnd(2**32))
else:
seed_w=np.uint32(19710211)
seed_z=np.uint32(20081010)
if Shape=='Ball':
MyRoutines.InBallSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z)
else:
MyRoutines.InBoxSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z)
print('All particules distributed')
CLLaunch=MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number))
CLLaunch.wait()
cl.enqueue_copy(queue,MyCoM,clCoM)
print('Center Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2]))
if VirielStress:
CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173))
else:
CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,Velocity,np.uint32(110271),np.uint32(250173))
CLLaunch.wait()
print('All particules stressed')
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential)
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic)
CLLaunch.wait()
cl.enqueue_copy(queue,MyPotential,clPotential)
cl.enqueue_copy(queue,MyKinetic,clKinetic)
print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic)))
if SpeedRendering:
SizeOfBox=max(2*MyKinetic)
else:
SizeOfBox=SizeOfShape
if OpenGL:
print('\tTiny documentation to interact OpenGL rendering:\n')
print('\t<Left|Right> Rotate around X axis')
print('\t <Up|Down> Rotate around Y axis')
print('\t <z|Z> Rotate around Z axis')
print('\t <-|+> Unzoom/Zoom')
print('\t <s> Toggle to display Positions or Velocities')
print('\t <Esc> Quit\n')
wall_time_start=time.time()
Durations=np.array([],dtype=MyFloat)
print('Starting!')
if OpenGL:
global ViewRX,ViewRY,ViewRZ
Iterations=0
ViewRX,ViewRY,ViewRZ = 0.,0.,0.
# Launch OpenGL Loop
glutInit(sys.argv)
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB)
glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE,GLUT_ACTION_CONTINUE_EXECUTION)
glutInitWindowSize(512,512)
glutCreateWindow(b'NBodyGL')
setup_viewport()
glutReshapeFunc(reshape)
glutDisplayFunc(display)
glutIdleFunc(display)
# glutMouseFunc(mouse)
glutSpecialFunc(special)
glutKeyboardFunc(keyboard)
glutMainLoop()
else:
for iteration in range(Iterations):
Elapsed=MainOpenCL(clDataX,clDataV,Step,Method)
if Verbose:
# print("Duration of #%s iteration: %s" % (iteration,Elapsed))
cl.enqueue_copy(queue, MyDataX, clDataX)
print("Positions for #%s iteration: %s" % (iteration,MyDataX))
else:
sys.stdout.write('.')
sys.stdout.flush()
Durations=np.append(Durations,Elapsed)
print('\nEnding!')
MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number))
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential)
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic)
CLLaunch.wait()
cl.enqueue_copy(queue,MyCoM,clCoM)
cl.enqueue_copy(queue,MyPotential,clPotential)
cl.enqueue_copy(queue,MyKinetic,clKinetic)
print('\nCenter Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2]))
print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic)))
print("Duration stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n\n\tVariability:\t%s\n" % (Device,Iterations,np.mean(Durations),np.median(Durations),np.std(Durations),np.min(Durations),np.max(Durations),np.std(Durations)/np.median(Durations)))
# FPS: 1/Elapsed
FPS=np.ones(len(Durations))
FPS/=Durations
print("FPS stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n" % (Device,Iterations,np.mean(FPS),np.median(FPS),np.std(FPS),np.min(FPS),np.max(FPS)))
# Contraction of Square*Size*Hertz: Size*Size/Elapsed
Squertz=np.ones(len(Durations))
Squertz*=Number*Number
Squertz/=Durations
print("Squertz in log10 & complete stats on device %s with %s iterations :\n\tMean:\t%s\t%s\n\tMedian:\t%s\t%s\n\tStddev:\t%s\t%s\n\tMin:\t%s\t%s\n\tMax:\t%s\t%s\n" % (Device,Iterations,np.log10(np.mean(Squertz)),np.mean(Squertz),np.log10(np.median(Squertz)),np.median(Squertz),np.log10(np.std(Squertz)),np.std(Squertz),np.log10(np.min(Squertz)),np.min(Squertz),np.log10(np.max(Squertz)),np.max(Squertz)))
clDataX.release()
clDataV.release()
clKinetic.release()
clPotential.release()