Newer
Older
Parallel Algorithms
===================
.. include:: subst.rst
Element-wise expression evalution ("map")
-----------------------------------------
.. module:: pyopencl.elementwise
Evaluating involved expressions on :class:`pyopencl.array.Array` instances by
using overloaded operators can be somewhat inefficient, because a new temporary
is created for each intermediate result. The functionality in the module
:mod:`pyopencl.elementwise` contains tools to help generate kernels that
evaluate multi-stage expressions on one or several operands in a single pass.
Andreas Klöckner
committed
.. autoclass:: ElementwiseKernel(context, arguments, operation, name="kernel", preamble="", options=[])
.. method:: __call__(*args, wait_for=None)
Invoke the generated scalar kernel. The arguments may either be scalars or
:class:`GPUArray` instances.
|std-enqueue-blurb|
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Here's a usage example::
import pyopencl as cl
import pyopencl.array as cl_array
import numpy
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
n = 10
a_gpu = cl_array.to_device(
ctx, queue, numpy.random.randn(n).astype(numpy.float32))
b_gpu = cl_array.to_device(
ctx, queue, numpy.random.randn(n).astype(numpy.float32))
from pyopencl.elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(ctx,
"float a, float *x, "
"float b, float *y, "
"float *z",
"z[i] = a*x[i] + b*y[i]",
"linear_combination")
c_gpu = cl_array.empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
import numpy.linalg as la
assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
(You can find this example as :file:`examples/demo_elementwise.py` in the PyOpenCL
distribution.)
.. _custom-reductions:
Sums and counts ("reduce")
--------------------------
.. module:: pyopencl.reduction
.. class:: ReductionKernel(ctx, dtype_out, neutral, reduce_expr, map_expr=None, arguments=None, name="reduce_kernel", options=[], preamble="")
Generate a kernel that takes a number of scalar or vector *arguments*
(at least one vector argument), performs the *map_expr* on each entry of
the vector argument and then the *reduce_expr* on the outcome of that.
*neutral* serves as an initial value. *preamble* offers the possibility
to add preprocessor directives and other code (such as helper functions)
to be added before the actual reduction kernel code.
Vectors in *map_expr* should be indexed by the variable *i*. *reduce_expr*
uses the formal values "a" and "b" to indicate two operands of a binary
reduction operation. If you do not specify a *map_expr*, ``in[i]`` is
automatically assumed and treated as the only one input argument.
*dtype_out* specifies the :class:`numpy.dtype` in which the reduction is
performed and in which the result is returned. *neutral* is specified as
float or integer formatted as string. *reduce_expr* and *map_expr* are
specified as string formatted operations and *arguments* is specified as a
string formatted as a C argument list. *name* specifies the name as which
the kernel is compiled. *options* are passed unmodified to
:meth:`pyopencl.Program.build`. *preamble* specifies a string of code that
is inserted before the actual kernels.
.. method:: __call__(*args, queue=None, wait_for=None, return_event=False, out=None)
|explain-waitfor|
With *out* the resulting single-entry :class:`pyopencl.array.Array` can
be specified. Because offsets are supported one can store results
anywhere (e.g. ``out=a[3]``).
:return: the resulting scalar as a single-entry :class:`pyopencl.array.Array`
if *return_event* is *False*, otherwise a tuple ``(scalar_array, event)``.
.. note::
The returned :class:`pyopencl.Event` corresponds only to part of the
execution of the reduction. It is not suitable for profiling.
.. versionadded: 2011.1
Here's a usage example::
a = pyopencl.array.arange(queue, 400, dtype=numpy.float32)
b = pyopencl.array.arange(queue, 400, dtype=numpy.float32)
krnl = ReductionKernel(ctx, numpy.float32, neutral="0",
reduce_expr="a+b", map_expr="x[i]*y[i]",
arguments="__global float *x, __global float *y")
my_dot_prod = krnl(a, b).get()
.. _custom-scan:
Prefix Sums ("scan")
--------------------
.. module:: pyopencl.scan
.. |scan_extra_args| replace:: a list of tuples *(name, value)* specifying
extra arguments to pass to the scan procedure. For version 2013.1,
*value* must be a of a :mod:`numpy` sized scalar type. As of version 2013.2,
*value* may also be a :class:`pyopencl.array.Array`.
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
.. |preamble| replace:: A snippet of C that is inserted into the compiled kernel
before the actual kernel function. May be used for, e.g. type definitions
or include statements.
A prefix sum is a running sum of an array, as provided by
e.g. :mod:`numpy.cumsum`::
>>> import numpy as np
>>> a = [1,1,1,1,1,2,2,2,2,2]
>>> np.cumsum(a)
array([ 1, 2, 3, 4, 5, 7, 9, 11, 13, 15])
This is a very simple example of what a scan can do. It turns out that scans
are significantly more versatile. They are a basic building block of many
non-trivial parallel algorithms. Many of the operations enabled by scans seem
difficult to parallelize because of loop-carried dependencies.
.. seealso::
`Prefix sums and their applications <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6230>`_, by Guy Blelloch.
This article gives an overview of some surprising applications of scans.
:ref:`predefined-scans`
These operations built into PyOpenCL are realized using :class:`GenericScanKernel`.
Usage Example
^^^^^^^^^^^^^
This example illustrates the implementation of a simplified version of
:func:`pyopencl.algorithm.copy_if`,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
which copies integers from an array into the (variable-size) output if they are
greater than 300::
knl = GenericScanKernel(
ctx, np.int32,
arguments="__global int *ary, __global int *out",
input_expr="(ary[i] > 300) ? 1 : 0",
scan_expr="a+b", neutral="0",
output_statement="""
if (prev_item != item) out[item-1] = ary[i];
""")
out = a.copy()
knl(a, out)
a_host = a.get()
out_host = a_host[a_host > 300]
assert (out_host == out.get()[:len(out_host)]).all()
The value being scanned over is a number of flags indicating whether each array
element is greater than 300. These flags are computed by *input_expr*. The
prefix sum over this array gives a running count of array items greater than
300. The *output_statement* the compares `prev_item` (the previous item's scan
result, i.e. index) to `item` (the current item's scan result, i.e.
index). If they differ, i.e. if the predicate was satisfied at this
position, then the item is stored in the output at the computed index.
This example does not make use of the following advanced features also available
in PyOpenCL:
* Segmented scans
* Access to the previous item in *input_expr* (e.g. for comparisons)
See the `implementation <https://github.com/pyopencl/pyopencl/blob/master/pyopencl/scan.py#L1353>`_ of :func:`unique` for an example.
Making Custom Scan Kernels
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: GenericScanKernel
.. method:: __call__(*args, allocator=None, queue=None, size=None, wait_for=None)
*queue* and *allocator* default to the ones provided on the first
:class:`pyopencl.array.Array` in *args*. *size* may specify the
length of the scan to be carried out. If not given, this length
is inferred from the first array argument passed.
|std-enqueue-blurb|
.. note::
The returned :class:`pyopencl.Event` corresponds only to part of the
execution of the scan. It is not suitable for profiling.
Debugging aids
~~~~~~~~~~~~~~
.. class:: GenericDebugScanKernel
Performs the same function and has the same interface as
:class:`GenericScanKernel`, but uses a dead-simple, sequential scan. Works
best on CPU platforms, and helps isolate bugs in scans by removing the
potential for issues originating in parallel execution.
.. _predefined-scans:
Simple / Legacy Interface
^^^^^^^^^^^^^^^^^^^^^^^^^
.. class:: ExclusiveScanKernel(ctx, dtype, scan_expr, neutral, name_prefix="scan", options=[], preamble="", devices=None)
Generates a kernel that can compute a `prefix sum <https://secure.wikimedia.org/wikipedia/en/wiki/Prefix_sum>`_
using any associative operation given as *scan_expr*.
*scan_expr* uses the formal values "a" and "b" to indicate two operands of
an associative binary operation. *neutral* is the neutral element
of *scan_expr*, obeying *scan_expr(a, neutral) == a*.
*dtype* specifies the type of the arrays being operated on.
*name_prefix* is used for kernel names to ensure recognizability
in profiles and logs. *options* is a list of compiler options to use
when building. *preamble* specifies a string of code that is
inserted before the actual kernels. *devices* may be used to restrict
the set of devices on which the kernel is meant to run. (defaults
to all devices in the context *ctx*.
.. method:: __call__(self, input_ary, output_ary=None, allocator=None, queue=None)
.. class:: InclusiveScanKernel(dtype, scan_expr, neutral=None, name_prefix="scan", options=[], preamble="", devices=None)
Works like :class:`ExclusiveScanKernel`.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
*neutral* is now always required.
For the array `[1,2,3]`, inclusive scan results in `[1,3,6]`, and exclusive
scan results in `[0,1,3]`.
Here's a usage example::
knl = InclusiveScanKernel(context, np.int32, "a+b")
n = 2**20-2**18+5
host_data = np.random.randint(0, 10, n).astype(np.int32)
dev_data = cl_array.to_device(queue, host_data)
knl(dev_data)
assert (dev_data.get() == np.cumsum(host_data, axis=0)).all()
Predicated copies ("partition", "unique", ...)
----------------------------------------------
.. module:: pyopencl.algorithm
.. autofunction:: copy_if
.. autofunction:: remove_if
.. autofunction:: partition
.. autofunction:: unique
Sorting (radix sort)
--------------------
.. autoclass:: RadixSort
.. automethod:: __call__
Building many variable-size lists
---------------------------------
.. autoclass:: ListOfListsBuilder
.. automethod:: __call__