Newer
Older
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
# avoid spurious: pytest.mark.parametrize is not callable
# avoid spurious: Module 'scipy.special' has no 'jn' member; maybe 'jv'
# pylint: disable=not-callable,no-member
import pyopencl.array as cl_array
import pyopencl as cl
import pyopencl.clmath as clmath
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl
as pytest_generate_tests)
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
try:
import faulthandler
except ImportError:
pass
else:
faulthandler.enable()
numpy_func_names = {
"asin": "arcsin",
"acos": "arccos",
"atan": "arctan",
}
def make_unary_function_test(name, limits=(0, 1), threshold=0, use_complex=False):
a = float(a)
b = float(b)
def test(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
gpu_func = getattr(clmath, name)
dev = context.devices[0]
if has_double_support(dev):
if use_complex and has_struct_arg_count_bug(dev) == "apple":
dtypes = [np.float32, np.float64, np.complex64]
elif use_complex:
dtypes = [np.float32, np.float64, np.complex64, np.complex128]
else:
dtypes = [np.float32, np.float64]
if use_complex:
dtypes = [np.float32, np.complex64]
else:
dtypes = [np.float32]
dtype = np.dtype(dtype)
args = cl_array.arange(queue, a, b, (b-a)/s, dtype=dtype)
if dtype.kind == "c":
# args = args + dtype.type(1j) * args
args = args + args * dtype.type(1j)
gpu_results = gpu_func(args).get()
cpu_results = cpu_func(args.get())
my_threshold = threshold
if dtype.kind == "c" and isinstance(use_complex, float):
my_threshold = use_complex
assert (max_err <= my_threshold).all(), \
test_ceil = make_unary_function_test("ceil", (-10, 10))
test_floor = make_unary_function_test("ceil", (-10, 10))
test_fabs = make_unary_function_test("fabs", (-10, 10))
test_exp = make_unary_function_test("exp", (-3, 3), 1e-5, use_complex=True)
test_log = make_unary_function_test("log", (1e-5, 1), 1e-6, use_complex=True)
test_log10 = make_unary_function_test("log10", (1e-5, 1), 5e-7)
test_sqrt = make_unary_function_test("sqrt", (1e-5, 1), 3e-7, use_complex=True)
test_sin = make_unary_function_test("sin", (-10, 10), 2e-7, use_complex=2e-2)
test_cos = make_unary_function_test("cos", (-10, 10), 2e-7, use_complex=2e-2)
test_asin = make_unary_function_test("asin", (-0.9, 0.9), 5e-7)
test_acos = make_unary_function_test("acos", (-0.9, 0.9), 5e-7)
test_tan = make_unary_function_test("tan",
(-math.pi/2 + 0.1, math.pi/2 - 0.1), 4e-5, use_complex=True)
test_atan = make_unary_function_test("atan", (-10, 10), 2e-7)
test_sinh = make_unary_function_test("sinh", (-3, 3), 3e-6, use_complex=2e-3)
test_cosh = make_unary_function_test("cosh", (-3, 3), 3e-6, use_complex=2e-3)
test_tanh = make_unary_function_test("tanh", (-3, 3), 2e-6, use_complex=True)
def test_atan2(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for s in sizes:
a = (cl_array.arange(queue, s, dtype=np.float32) - np.float32(s / 2)) / 100
a2 = (s / 2 - 1 - cl_array.arange(queue, s, dtype=np.float32)) / 100
b = clmath.atan2(a, a2)
a = a.get()
a2 = a2.get()
b = b.get()
for i in range(s):
assert abs(math.atan2(a[i], a2[i]) - b[i]) < 1e-6
def test_atan2pi(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for s in sizes:
a = (cl_array.arange(queue, s, dtype=np.float32) - np.float32(s / 2)) / 100
a2 = (s / 2 - 1 - cl_array.arange(queue, s, dtype=np.float32)) / 100
b = clmath.atan2pi(a, a2)
a = a.get()
a2 = a2.get()
b = b.get()
for i in range(s):
assert abs(math.atan2(a[i], a2[i]) / math.pi - b[i]) < 1e-6
def test_fmod(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for s in sizes:
a = cl_array.arange(queue, s, dtype=np.float32)/10
a2 = cl_array.arange(queue, s, dtype=np.float32)/45.2 + 0.1
b = clmath.fmod(a, a2)
a = a.get()
a2 = a2.get()
b = b.get()
for i in range(s):
assert math.fmod(a[i], a2[i]) == b[i]
def test_ldexp(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for s in sizes:
a = cl_array.arange(queue, s, dtype=np.float32)
a2 = cl_array.arange(queue, s, dtype=np.float32)*1e-3
a = a.get()
a2 = a2.get()
b = b.get()
for i in range(s):
assert math.ldexp(a[i], int(a2[i])) == b[i]
def test_modf(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for s in sizes:
fracpart, intpart = clmath.modf(a)
a = a.get()
intpart = intpart.get()
fracpart = fracpart.get()
for i in range(s):
fracpart_true, intpart_true = math.modf(a[i])
assert intpart_true == intpart[i]
assert abs(fracpart_true - fracpart[i]) < 1e-4
def test_frexp(ctx_factory):
context = ctx_factory()
queue = cl.CommandQueue(context)
for s in sizes:
significands, exponents = clmath.frexp(a)
a = a.get()
significands = significands.get()
exponents = exponents.get()
for i in range(s):
sig_true, ex_true = math.frexp(a[i])
assert sig_true == significands[i]
assert ex_true == exponents[i]
try:
import scipy.special as spec
except ImportError:
skip("scipy not present--cannot test Bessel function")
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
if not has_double_support(ctx.devices[0]):
skip("no double precision support--cannot test bessel function")
nterms = 30
try:
from pyfmmlib import jfuns2d, hank103_vec
except ImportError:
use_pyfmmlib = False
use_pyfmmlib = True
if use_pyfmmlib:
a = np.logspace(-3, 3, 10**6)
else:
a = np.logspace(-5, 5, 10**6)
("j", clmath.bessel_jn, spec.jn, False),
("y", clmath.bessel_yn, spec.yn, True)
]:
if is_rel:
def get_err(check, ref):
return np.max(np.abs(check-ref)) / np.max(np.abs(ref))
def get_err(check, ref):
return np.max(np.abs(check-ref))
if use_pyfmmlib:
pfymm_result = np.empty((len(a), nterms), dtype=np.complex128)
if i % 100000 == 0:
print("%.1f %%" % (100 * i/len(a)))
ier, fjs, _, _ = jfuns2d(nterms, a_i, 1, 0, 10000)
pfymm_result[i] = fjs[:nterms]
assert ier == 0
elif which_func == "y":
h0, h1 = hank103_vec(a, ifexpon=1)
pfymm_result[:, 0] = h0.imag
pfymm_result[:, 1] = h1.imag
a_dev = cl_array.to_device(queue, a)
for n in range(0, nterms):
cl_bessel = cl_func(n, a_dev).get()
scipy_bessel = scipy_func(n, a)
error_scipy = get_err(cl_bessel, scipy_bessel)
assert error_scipy < 1e-10, error_scipy
if use_pyfmmlib and (
pyfmm_bessel = pfymm_result[:, n]
error_pyfmm = get_err(cl_bessel, pyfmm_bessel)
assert error_pyfmm < 1e-10, error_pyfmm
error_pyfmm_scipy = get_err(scipy_bessel, pyfmm_bessel)
print(which_func, n, error_scipy, error_pyfmm, error_pyfmm_scipy)
print(which_func, n, error_scipy)
if 0 and n == 15:
import matplotlib.pyplot as pt
#pt.plot(scipy_bessel)
#pt.plot(cl_bessel)
pt.loglog(a, np.abs(cl_bessel-scipy_bessel), label="vs scipy")
if use_pyfmmlib:
pt.loglog(a, np.abs(cl_bessel-pyfmm_bessel), label="vs pyfmmlib")
@pytest.mark.parametrize("ref_src", ["pyfmmlib", "scipy"])
def test_complex_bessel(ctx_factory, ref_src):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
if not has_double_support(ctx.devices[0]):
from pytest import skip
skip("no double precision support--cannot test complex bessel function")
v = 40
n = 10**5
np.random.seed(13)
z = (
np.logspace(-5, 2, n)
* np.exp(1j * 2 * np.pi * np.random.rand(n)))
if ref_src == "pyfmmlib":
pyfmmlib = pytest.importorskip("pyfmmlib")
jv_ref = np.zeros(len(z), "complex")
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
vin = v+1
for i in range(len(z)):
ier, fjs, _, _ = pyfmmlib.jfuns2d(vin, z[i], 1, 0, 10000)
assert ier == 0
jv_ref[i] = fjs[v]
elif ref_src == "scipy":
spec = pytest.importorskip("scipy.special")
jv_ref = spec.jv(v, z)
else:
raise ValueError("ref_src")
z_dev = cl_array.to_device(queue, z)
jv_dev = clmath.bessel_jn(v, z_dev)
abs_err_jv = np.abs(jv_dev.get() - jv_ref)
abs_jv_ref = np.abs(jv_ref)
rel_err_jv = abs_err_jv/abs_jv_ref
# use absolute error instead if the function value itself is too small
tiny = 1e-300
ind = abs_jv_ref < tiny
rel_err_jv[ind] = abs_err_jv[ind]
# if the reference value is inf or nan, set the error to zero
ind1 = np.isinf(abs_jv_ref)
ind2 = np.isnan(abs_jv_ref)
rel_err_jv[ind1] = 0
rel_err_jv[ind2] = 0
if 0:
print(abs(z))
print(np.abs(jv_ref))
print(np.abs(jv_dev.get()))
print(rel_err_jv)
max_err = np.max(rel_err_jv)
assert max_err <= 2e-13, max_err
print("Jv", np.max(rel_err_jv))
if 0:
import matplotlib.pyplot as pt
pt.loglog(np.abs(z), rel_err_jv)
pt.show()
@pytest.mark.parametrize("ref_src", ["pyfmmlib", "scipy"])
def test_hankel_01_complex(ctx_factory, ref_src):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
if not has_double_support(ctx.devices[0]):
from pytest import skip
skip("no double precision support--cannot test complex bessel function")
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
n = 10**6
np.random.seed(11)
z = (
np.logspace(-5, 2, n)
* np.exp(1j * 2 * np.pi * np.random.rand(n)))
def get_err(check, ref):
return np.max(np.abs(check-ref)) / np.max(np.abs(ref))
if ref_src == "pyfmmlib":
pyfmmlib = pytest.importorskip("pyfmmlib")
h0_ref, h1_ref = pyfmmlib.hank103_vec(z, ifexpon=1)
elif ref_src == "scipy":
spec = pytest.importorskip("scipy.special")
h0_ref = spec.hankel1(0, z)
h1_ref = spec.hankel1(1, z)
else:
raise ValueError("ref_src")
z_dev = cl_array.to_device(queue, z)
h0_dev, h1_dev = clmath.hankel_01(z_dev)
rel_err_h0 = np.abs(h0_dev.get() - h0_ref)/np.abs(h0_ref)
rel_err_h1 = np.abs(h1_dev.get() - h1_ref)/np.abs(h1_ref)
max_rel_err_h0 = np.max(rel_err_h0)
max_rel_err_h1 = np.max(rel_err_h1)
print("H0", max_rel_err_h0)
print("H1", max_rel_err_h1)
assert max_rel_err_h0 < 4e-13
assert max_rel_err_h1 < 2e-13
if 0:
import matplotlib.pyplot as pt
pt.loglog(np.abs(z), rel_err_h0)
pt.loglog(np.abs(z), rel_err_h1)
pt.show()
def test_outoforderqueue_clmath(ctx_factory):
context = ctx_factory()
try:
queue = cl.CommandQueue(context,
properties=cl.command_queue_properties.OUT_OF_ORDER_EXEC_MODE_ENABLE)
except Exception:
pytest.skip("out-of-order queue not available")
a = np.random.rand(10**6).astype(np.dtype("float32"))
a_gpu = cl_array.to_device(queue, a)
# testing that clmath functions wait for and create events
b_gpu = clmath.fabs(clmath.sin(a_gpu * 5))
queue.finish()
b1 = b_gpu.get()
b = np.abs(np.sin(a * 5))
assert np.abs(b1 - b).mean() < 1e-5
if __name__ == "__main__":
import sys
if len(sys.argv) > 1: