Newer
Older
#!/usr/bin/env python3
#
# TrouNoir model using PyOpenCL or PyCUDA
#
# CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
#
# Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
#
# Thanks to Andreas Klockner for PyOpenCL and PyCUDA:
# http://mathema.tician.de/software/pyopencl
#
# Original code programmed in Fortran 77 in mars 1994
# for Practical Work of Numerical Simulation
# DEA (old Master2) in astrophysics and spatial techniques in Meudon
# by Herve Aussel & Emmanuel Quemener
#
# Conversion in C done by Emmanuel Quemener in august 1997
# GPUfication in OpenCL under Python in july 2019
# GPUfication in CUDA under Python in august 2019
#
# Thanks to :
#
# - Herve Aussel for his part of code of black body spectrum
# - Didier Pelat for his help to perform this work
# - Jean-Pierre Luminet for his article published in 1979
# - Luc Blanchet for his disponibility about my questions in General Relativity
# - Pierre Lena for his passion about science and vulgarisation
# If crash on OpenCL Intel implementation, add following options and force
# export PYOPENCL_COMPILER_OUTPUT=1
# export CL_CONFIG_USE_VECTORIZER=True
# export CL_CONFIG_CPU_VECTORIZER_MODE=16
import sys
import getopt
from socket import gethostname
PhysicsList = {"Einstein": 0, "Newton": 1}
return PhysicsList
#
# Blank space below to simplify debugging on OpenCL code
#
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#define PI (float)3.14159265359e0f
#define nbr 256
#define EINSTEIN 0
#define NEWTON 1
#ifdef SETTRACKPOINTS
#define TRACKPOINTS SETTRACKPOINTS
#else
#define TRACKPOINTS 2048
#endif
float atanp(float x,float y)
{
float angle;
angle=atan2(y,x);
if (angle<0.e0f)
{
angle+=(float)2.e0f*PI;
}
return angle;
}
float f(float v)
{
return v;
}
#if PHYSICS == NEWTON
float g(float u,float m,float b)
{
return (-u);
}
#else
float g(float u,float m,float b)
{
return (3.e0f*m/b*pow(u,2)-u);
}
#endif
void calcul(float *us,float *vs,float up,float vp,
float h,float m,float b)
{
float c0,c1,c2,c3,d0,d1,d2,d3;
c0=h*f(vp);
c1=h*f(vp+c0/2.e0f);
c2=h*f(vp+c1/2.e0f);
c3=h*f(vp+c2);
d0=h*g(up,m,b);
d1=h*g(up+d0/2.e0f,m,b);
d2=h*g(up+d1/2.e0f,m,b);
d3=h*g(up+d2,m,b);
*us=up+(c0+2.e0f*c1+2.e0f*c2+c3)/6.e0f;
*vs=vp+(d0+2.e0f*d1+2.e0f*d2+d3)/6.e0f;
}
void rungekutta(float *ps,float *us,float *vs,
float pp,float up,float vp,
float h,float m,float b)
{
calcul(us,vs,up,vp,h,m,b);
*ps=pp+h;
}
float decalage_spectral(float r,float b,float phi,
float tho,float m)
{
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
}
float spectre(float rf,int q,float b,float db,
float h,float r,float m,float bss)
{
float flx;
// flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
flx=exp(q*log(r/m)+4.e0f*log(rf))*b*db*h;
return(flx);
}
float spectre_cn(float rf32,float b32,float db32,
float h32,float r32,float m32,float bss32)
{
#define MYFLOAT float
MYFLOAT rf=(MYFLOAT)(rf32);
MYFLOAT b=(MYFLOAT)(b32);
MYFLOAT db=(MYFLOAT)(db32);
MYFLOAT h=(MYFLOAT)(h32);
MYFLOAT r=(MYFLOAT)(r32);
MYFLOAT m=(MYFLOAT)(m32);
MYFLOAT bss=(MYFLOAT)(bss32);
MYFLOAT flx;
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
int fi,posfreq;
#define planck 6.62e-34f
#define k 1.38e-23f
#define c2 9.e16f
#define temp 3.e7f
#define m_point 1.e0f
#define lplanck (log(6.62e0f)-34.e0f*log(10.e0f))
#define lk (log(1.38e0f)-23.e0f*log(10.e0f))
#define lc2 (log(9.e0f)+16.e0f*log(10.e0f))
MYFLOAT v=1.e0f-3.e0f/r;
qu=1.e0f/sqrt((1.e0f-3.e0f/r)*r)*(sqrt(r)-sqrt(6.e0f)+sqrt(3.e0f)/2.e0f*log((sqrt(r)+sqrt(3.e0f))/(sqrt(r)-sqrt(3.e0f))* 0.17157287525380988e0f )); // # noqa: E501
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
temp_em=temp*sqrt(m)*exp(0.25e0f*log(m_point)-0.75e0f*log(r)-0.125e0f*log(v)+0.25e0f*log(fabs(qu)));
flux_int=0.e0f;
flx=0.e0f;
for (fi=0;fi<nbr;fi++)
{
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
nu_rec=nu_em*rf;
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
if ((posfreq>0)&&(posfreq<nbr))
{
// Initial version
// flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
// Version with log used
//flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
// flux_int*=pow(rf,3)*b*db*h;
//flux_int*=exp(3.e0f*log(rf))*b*db*h;
flux_int=2.e0f*exp(lplanck-lc2+3.e0f*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.e0f)*exp(3.e0f*log(rf))*b*db*h;
flx+=flux_int;
}
}
return((float)(flx));
}
void impact(float phi,float r,float b,float tho,float m,
float *zp,float *fp,
int q,float db,
float h,int raie)
{
float flx,rf,bss;
rf=decalage_spectral(r,b,phi,tho,m);
if (raie==0)
{
bss=1.e19f;
flx=spectre_cn(rf,b,db,h,r,m,bss);
}
else
{
bss=2.e0f;
flx=spectre(rf,q,b,db,h,r,m,bss);
}
*zp=1.e0f/rf;
*fp=flx;
}
__kernel void EachPixel(__global float *zImage,__global float *fImage,
float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
uint xi=(uint)get_global_id(0);
uint yi=(uint)get_global_id(1);
uint sizex=(uint)get_global_size(0);
uint sizey=(uint)get_global_size(1);
// Perform trajectory for each pixel, exit on hit
float m,rs,ri,re,tho;
int q,raie;
m=Mass;
rs=2.e0f*m;
ri=InternalRadius;
re=ExternalRadius;
tho=Angle;
q=-2;
raie=Line;
float bmx,db,b,h;
float rp0,rps;
float phi,phd;
uint nh=0;
float zp=0.e0f,fp=0.e0f;
// Autosize for image
bmx=1.25e0f*re;
h=4.e0f*PI/(float)TRACKPOINTS;
// set origin as center of image
float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
// angle extracted from cylindric symmetry
phi=atanp(x,y);
phd=atanp(cos(phi)*sin(tho),cos(tho));
float up,vp,pp,us,vs,ps;
// impact parameter
b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
// step of impact parameter;
db=bmx/(float)(sizex);
up=0.e0f;
vp=1.e0f;
pp=0.e0f;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
rps=fabs(b/us);
rp0=rps;
int ExitOnImpact=0;
do
{
nh++;
pp=ps;
up=us;
vp=vs;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
rps=fabs(b/us);
ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>=ri)&&(rps<=re)?1:0;
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
} while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0)&&(nh<TRACKPOINTS));
if (ExitOnImpact==1) {
impact(phi,rps,b,tho,m,&zp,&fp,q,db,h,raie);
}
else
{
zp=0.e0f;
fp=0.e0f;
}
barrier(CLK_GLOBAL_MEM_FENCE);
zImage[yi+sizex*xi]=(float)zp;
fImage[yi+sizex*xi]=(float)fp;
}
__kernel void Pixel(__global float *zImage,__global float *fImage,
__global float *Trajectories,__global int *IdLast,
uint ImpactParameter,
float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
uint xi=(uint)get_global_id(0);
uint yi=(uint)get_global_id(1);
uint sizex=(uint)get_global_size(0);
uint sizey=(uint)get_global_size(1);
// Perform trajectory for each pixel
float m,ri,re,tho;
int q,raie;
m=Mass;
ri=InternalRadius;
re=ExternalRadius;
tho=Angle;
q=-2;
raie=Line;
float bmx,db,b,h;
float phi,phd,php,nr,r;
float zp=0.e0f,fp=0.e0f;
// Autosize for image, 25% greater than external radius
bmx=1.25e0f*re;
// Angular step of integration
h=4.e0f*PI/(float)TRACKPOINTS;
// Step of Impact Parameter
db=bmx/(2.e0f*(float)ImpactParameter);
// set origin as center of image
float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
// angle extracted from cylindric symmetry
phi=atanp(x,y);
phd=atanp(cos(phi)*sin(tho),cos(tho));
// Real Impact Parameter
b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
// Integer Impact Parameter
uint bi=(uint)sqrt(x*x+y*y);
int HalfLap=0,ExitOnImpact=0,ni;
if (bi<ImpactParameter)
{
do
{
php=phd+(float)HalfLap*PI;
nr=php/h;
ni=(int)nr;
if (ni<IdLast[bi])
{
r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
}
else
{
r=Trajectories[bi*TRACKPOINTS+ni];
}
if ((r<=re)&&(r>=ri))
{
ExitOnImpact=1;
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
}
HalfLap++;
} while ((HalfLap<=2)&&(ExitOnImpact==0));
}
barrier(CLK_GLOBAL_MEM_FENCE);
zImage[yi+sizex*xi]=zp;
fImage[yi+sizex*xi]=fp;
}
__kernel void Circle(__global float *Trajectories,__global int *IdLast,
__global float *zImage,__global float *fImage,
float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
// Integer Impact Parameter ID
int bi=get_global_id(0);
// Integer points on circle
int i=get_global_id(1);
// Integer Impact Parameter Size (half of image)
int bmaxi=get_global_size(0);
// Integer Points on circle
int imx=get_global_size(1);
// Perform trajectory for each pixel
float m,ri,re,tho;
int q,raie;
m=Mass;
ri=InternalRadius;
re=ExternalRadius;
tho=Angle;
raie=Line;
float bmx,db,b,h;
float phi,phd;
float zp=0.e0f,fp=0.e0f;
// Autosize for image
bmx=1.25e0f*re;
// Angular step of integration
h=4.e0f*PI/(float)TRACKPOINTS;
// impact parameter
b=(float)bi/(float)bmaxi*bmx;
db=bmx/(2.e0f*(float)bmaxi);
phi=2.e0f*PI/(float)imx*(float)i;
phd=atanp(cos(phi)*sin(tho),cos(tho));
int yi=(int)((float)bi*sin(phi))+bmaxi;
int xi=(int)((float)bi*cos(phi))+bmaxi;
int HalfLap=0,ExitOnImpact=0,ni;
float php,nr,r;
do
{
php=phd+(float)HalfLap*PI;
nr=php/h;
ni=(int)nr;
if (ni<IdLast[bi])
{
r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
}
else
{
r=Trajectories[bi*TRACKPOINTS+ni];
}
if ((r<=re)&&(r>=ri))
{
ExitOnImpact=1;
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
}
HalfLap++;
} while ((HalfLap<=2)&&(ExitOnImpact==0));
zImage[yi+2*bmaxi*xi]=zp;
fImage[yi+2*bmaxi*xi]=fp;
barrier(CLK_GLOBAL_MEM_FENCE);
}
__kernel void Trajectory(__global float *Trajectories,__global int *IdLast,
float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
// Integer Impact Parameter ID
int bi=get_global_id(0);
// Integer Impact Parameter Size (half of image)
int bmaxi=get_global_size(0);
// Perform trajectory for each pixel
float m,rs,re;
m=Mass;
rs=2.e0f*m;
re=ExternalRadius;
float bmx,b,h;
int nh;
// Autosize for image
bmx=1.25e0f*re;
// Angular step of integration
h=4.e0f*PI/(float)TRACKPOINTS;
// impact parameter
b=(float)bi/(float)bmaxi*bmx;
float up,vp,pp,us,vs,ps;
up=0.e0f;
vp=1.e0f;
pp=0.e0f;
nh=0;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
// b versus us
float bvus=fabs(b/us);
float bvus0=bvus;
Trajectories[bi*TRACKPOINTS+nh]=bvus;
do
{
nh++;
pp=ps;
up=us;
vp=vs;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
bvus=fabs(b/us);
Trajectories[bi*TRACKPOINTS+nh]=bvus;
} while ((bvus>=rs)&&(bvus<=bvus0));
IdLast[bi]=nh;
barrier(CLK_GLOBAL_MEM_FENCE);
}
__kernel void EachCircle(__global float *zImage,__global float *fImage,
float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
// Integer Impact Parameter ID
uint bi=(uint)get_global_id(0);
// Integer Impact Parameter Size (half of image)
uint bmaxi=(uint)get_global_size(0);
private float Trajectory[TRACKPOINTS];
float m,rs,ri,re,tho;
int raie,q;
m=Mass;
rs=2.e0f*m;
ri=InternalRadius;
re=ExternalRadius;
tho=Angle;
q=-2;
raie=Line;
float bmx,db,b,h;
uint nh;
// Autosize for image
bmx=1.25e0f*re;
// Angular step of integration
h=4.e0f*PI/(float)TRACKPOINTS;
// impact parameter
b=(float)bi/(float)bmaxi*bmx;
db=bmx/(2.e0f*(float)bmaxi);
float up,vp,pp,us,vs,ps;
up=0.e0f;
vp=1.e0f;
pp=0.e0f;
nh=0;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
// b versus us
float bvus=fabs(b/us);
float bvus0=bvus;
Trajectory[nh]=bvus;
do
{
nh++;
pp=ps;
up=us;
vp=vs;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
bvus=(float)fabs(b/us);
Trajectory[nh]=bvus;
} while ((bvus>=rs)&&(bvus<=bvus0));
for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
Trajectory[i]=0.e0f;
}
uint imx=(uint)(16*bi);
for (uint i=0;i<imx;i++)
{
float zp=0.e0f,fp=0.e0f;
float phi=2.e0f*PI/(float)imx*(float)i;
float phd=atanp(cos(phi)*sin(tho),cos(tho));
uint yi=(uint)((float)bi*sin(phi)+bmaxi);
uint xi=(uint)((float)bi*cos(phi)+bmaxi);
uint HalfLap=0,ExitOnImpact=0,ni;
float php,nr,r;
do
{
php=phd+(float)HalfLap*PI;
nr=php/h;
ni=(int)nr;
if (ni<nh)
{
r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
}
else
{
r=Trajectory[ni];
}
if ((r<=re)&&(r>=ri))
{
ExitOnImpact=1;
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
}
HalfLap++;
} while ((HalfLap<=2)&&(ExitOnImpact==0));
zImage[yi+2*bmaxi*xi]=zp;
fImage[yi+2*bmaxi*xi]=fp;
}
barrier(CLK_GLOBAL_MEM_FENCE);
}
__kernel void Original(__global float *zImage,__global float *fImage,
uint Size,float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
// Integer Impact Parameter Size (half of image)
uint bmaxi=(uint)Size;
float Trajectory[TRACKPOINTS];
// Perform trajectory for each pixel
float m,rs,ri,re,tho;
int raie,q;
m=Mass;
rs=2.e0f*m;
ri=InternalRadius;
re=ExternalRadius;
tho=Angle;
q=-2;
raie=Line;
float bmx,db,b,h;
uint nh;
// Autosize for image
bmx=1.25e0f*re;
// Angular step of integration
h=4.e0f*PI/(float)TRACKPOINTS;
// Integer Impact Parameter ID
for (int bi=0;bi<bmaxi;bi++)
{
// impact parameter
b=(float)bi/(float)bmaxi*bmx;
db=bmx/(2.e0f*(float)bmaxi);
float up,vp,pp,us,vs,ps;
up=0.e0f;
vp=1.e0f;
pp=0.e0f;
nh=0;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
// b versus us
float bvus=fabs(b/us);
float bvus0=bvus;
Trajectory[nh]=bvus;
do
{
nh++;
pp=ps;
up=us;
vp=vs;
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
bvus=fabs(b/us);
Trajectory[nh]=bvus;
} while ((bvus>=rs)&&(bvus<=bvus0));
for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
Trajectory[i]=0.e0f;
}
int imx=(int)(16*bi);
for (int i=0;i<imx;i++)
{
float zp=0.e0f,fp=0.e0f;
float phi=2.e0f*PI/(float)imx*(float)i;
float phd=atanp(cos(phi)*sin(tho),cos(tho));
uint yi=(uint)((float)bi*sin(phi)+bmaxi);
uint xi=(uint)((float)bi*cos(phi)+bmaxi);
uint HalfLap=0,ExitOnImpact=0,ni;
float php,nr,r;
do
{
php=phd+(float)HalfLap*PI;
nr=php/h;
ni=(int)nr;
if (ni<nh)
{
r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
}
else
{
r=Trajectory[ni];
}
if ((r<=re)&&(r>=ri))
{
ExitOnImpact=1;
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
}
HalfLap++;
} while ((HalfLap<=2)&&(ExitOnImpact==0));
zImage[yi+2*bmaxi*xi]=zp;
fImage[yi+2*bmaxi*xi]=fp;
}
}
barrier(CLK_GLOBAL_MEM_FENCE);
}
"""
def KernelCodeCuda():
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
#define PI (float)3.14159265359
#define nbr 256
#define EINSTEIN 0
#define NEWTON 1
#ifdef SETTRACKPOINTS
#define TRACKPOINTS SETTRACKPOINTS
#else
#define TRACKPOINTS
#endif
__device__ float nothing(float x)
{
return(x);
}
__device__ float atanp(float x,float y)
{
float angle;
angle=atan2(y,x);
if (angle<0.e0f)
{
angle+=(float)2.e0f*PI;
}
return(angle);
}
__device__ float f(float v)
{
return(v);
}
#if PHYSICS == NEWTON
__device__ float g(float u,float m,float b)
{
return (-u);
}
#else
__device__ float g(float u,float m,float b)
{
return (3.e0f*m/b*pow(u,2)-u);
}
#endif
__device__ void calcul(float *us,float *vs,float up,float vp,
float h,float m,float b)
{
float c0,c1,c2,c3,d0,d1,d2,d3;
c0=h*f(vp);
c1=h*f(vp+c0/2.);
c2=h*f(vp+c1/2.);
c3=h*f(vp+c2);
d0=h*g(up,m,b);
d1=h*g(up+d0/2.,m,b);
d2=h*g(up+d1/2.,m,b);
d3=h*g(up+d2,m,b);
*us=up+(c0+2.*c1+2.*c2+c3)/6.;
*vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
}
__device__ void rungekutta(float *ps,float *us,float *vs,
float pp,float up,float vp,
float h,float m,float b)
{
calcul(us,vs,up,vp,h,m,b);
*ps=pp+h;
}
__device__ float decalage_spectral(float r,float b,float phi,
float tho,float m)
{
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
}
__device__ float spectre(float rf,int q,float b,float db,
float h,float r,float m,float bss)
{
float flx;
// flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
return(flx);
}
__device__ float spectre_cn(float rf32,float b32,float db32,
float h32,float r32,float m32,float bss32)
{
#define MYFLOAT float
MYFLOAT rf=(MYFLOAT)(rf32);
MYFLOAT b=(MYFLOAT)(b32);
MYFLOAT db=(MYFLOAT)(db32);
MYFLOAT h=(MYFLOAT)(h32);
MYFLOAT r=(MYFLOAT)(r32);
MYFLOAT m=(MYFLOAT)(m32);
MYFLOAT bss=(MYFLOAT)(bss32);
MYFLOAT flx;
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
int fi,posfreq;
#define planck 6.62e-34
#define k 1.38e-23
#define c2 9.e16
#define temp 3.e7
#define m_point 1.
#define lplanck (log(6.62)-34.*log(10.))
#define lk (log(1.38)-23.*log(10.))
#define lc2 (log(9.)+16.*log(10.))
MYFLOAT v=1.-3./r;
qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 )); // # noqa: #051
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
flux_int=0.;
flx=0.;
for (fi=0;fi<nbr;fi++)
{
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
nu_rec=nu_em*rf;
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
if ((posfreq>0)&&(posfreq<nbr))
{
// Initial version
// flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
// Version with log used
//flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
// flux_int*=pow(rf,3)*b*db*h;
//flux_int*=exp(3.*log(rf))*b*db*h;
flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
flx+=flux_int;
}
}
return((float)(flx));
}
__device__ void impact(float phi,float r,float b,float tho,float m,
float *zp,float *fp,
int q,float db,
float h,int raie)
{
float flx,rf,bss;
rf=decalage_spectral(r,b,phi,tho,m);
if (raie==0)
{
bss=1.e19;
flx=spectre_cn(rf,b,db,h,r,m,bss);
}
else
{
bss=2.;
flx=spectre(rf,q,b,db,h,r,m,bss);
}
*zp=1./rf;
*fp=flx;
}
__global__ void EachPixel(float *zImage,float *fImage,
float Mass,float InternalRadius,
float ExternalRadius,float Angle,
int Line)
{
uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
uint sizex=(uint)gridDim.x*blockDim.x;
uint sizey=(uint)gridDim.y*blockDim.y;
// Perform trajectory for each pixel, exit on hit
float m,rs,ri,re,tho;
int q,raie;
m=Mass;
rs=2.*m;
ri=InternalRadius;
re=ExternalRadius;
tho=Angle;
q=-2;
raie=Line;
float bmx,db,b,h;
float rp0,rpp,rps;
float phi,phd;
int nh;
float zp,fp;
// Autosize for image
bmx=1.25*re;
b=0.;
h=4.e0f*PI/(float)TRACKPOINTS;
// set origin as center of image
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
// angle extracted from cylindric symmetry
phi=atanp(x,y);
phd=atanp(cos(phi)*sin(tho),cos(tho));
float up,vp,pp,us,vs,ps;
// impact parameter