Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
#!/usr/bin/env python3
#
# Pi-by-MonteCarlo using PyCUDA/PyOpenCL
#
# performs an estimation of Pi using Monte Carlo method
# a large amount of iterations is divided and distributed to compute units
# a lot of options are provided to perform scalabilty tests
#
# use -h for complete set of options
#
# CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
# Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
#
# Thanks to Andreas Klockner for PyCUDA:
# http://mathema.tician.de/software/pycuda
# Thanks to Andreas Klockner for PyOpenCL:
# http://mathema.tician.de/software/pyopencl
#
# 2013-01-01 : problems with launch timeout
# http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
# Option "Interactive" "0" in /etc/X11/xorg.conf
# Common tools
import numpy
from numpy.random import randint as nprnd
import sys
import getopt
import time
import itertools
from socket import gethostname
class PenStacle:
"""Pentacle of Statistics from data"""
Avg=0
Med=0
Std=0
Min=0
Max=0
def __init__(self,Data):
self.Avg=numpy.average(Data)
self.Med=numpy.median(Data)
self.Std=numpy.std(Data)
self.Max=numpy.max(Data)
self.Min=numpy.min(Data)
def display(self):
print("%s %s %s %s %s" % (self.Avg,self.Med,self.Std,self.Min,self.Max))
class Experience:
"""Metrology for experiences"""
DeviceStyle=''
DeviceId=0
AvgD=0
MedD=0
StdD=0
MinD=0
MaxD=0
AvgR=0
MedR=0
StdR=0
MinR=0
MaxR=0
def __init__(self,DeviceStyle,DeviceId,Iterations):
self.DeviceStyle=DeviceStyle
self.DeviceId=DeviceId
self.Iterations
def Metrology(self,Data):
Duration=PenStacle(Data)
Rate=PenStacle(Iterations/Data)
print("Duration %s" % Duration)
print("Rate %s" % Rate)
def DictionariesAPI():
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3}
Computing={'INT32':0,'INT64':1,'FP32':2,'FP64':3}
Test={True:1,False:0}
return(Marsaglia,Computing,Test)
# find prime factors of a number
# Get for WWW :
# http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
def PrimeFactors(x):
factorlist=numpy.array([]).astype('uint32')
loop=2
while loop<=x:
if x%loop==0:
x/=loop
factorlist=numpy.append(factorlist,[loop])
else:
loop+=1
return factorlist
# Try to find the best thread number in Hybrid approach (Blocks&Threads)
# output is thread number
def BestThreadsNumber(jobs):
factors=PrimeFactors(jobs)
matrix=numpy.append([factors],[factors[::-1]],axis=0)
threads=1
for factor in matrix.transpose().ravel():
threads=threads*factor
if threads*threads>jobs or threads>512:
break
return(long(threads))
# Predicted Amdahl Law (Reduced with s=1-p)
def AmdahlR(N, T1, p):
return (T1*(1-p+p/N))
# Predicted Amdahl Law
def Amdahl(N, T1, s, p):
return (T1*(s+p/N))
# Predicted Mylq Law with first order
def Mylq(N, T1,s,c,p):
return (T1*(s+p/N)+c*N)
# Predicted Mylq Law with second order
def Mylq2(N, T1,s,c1,c2,p):
return (T1*(s+p/N)+c1*N+c2*N*N)
def KernelCodeCuda():
KERNEL_CODE_CUDA="""
#define TCONG 0
#define TSHR3 1
#define TMWC 2
#define TKISS 3
#define TINT32 0
#define TINT64 1
#define TFP32 2
#define TFP64 3
#define IFTHEN 1
// Marsaglia RNG very simple implementation
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
#define MWC (znew+wnew)
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
#define CONG (jcong=69069*jcong+1234567)
#define KISS ((MWC^CONG)+SHR3)
#define MWCfp MWC * 2.328306435454494e-10f
#define KISSfp KISS * 2.328306435454494e-10f
#define SHR3fp SHR3 * 2.328306435454494e-10f
#define CONGfp CONG * 2.328306435454494e-10f
__device__ ulong MainLoop(ulong iterations,uint seed_w,uint seed_z,size_t work)
{
#if TRNG == TCONG
uint jcong=seed_z+work;
#elif TRNG == TSHR3
uint jsr=seed_w+work;
#elif TRNG == TMWC
uint z=seed_z+work;
uint w=seed_w+work;
#elif TRNG == TKISS
uint jcong=seed_z+work;
uint jsr=seed_w+work;
uint z=seed_z-work;
uint w=seed_w-work;
#endif
ulong total=0;
for (ulong i=0;i<iterations;i++) {
#if TYPE == TINT32
#define THEONE 1073741824
#if TRNG == TCONG
uint x=CONG>>17 ;
uint y=CONG>>17 ;
#elif TRNG == TSHR3
uint x=SHR3>>17 ;
uint y=SHR3>>17 ;
#elif TRNG == TMWC
uint x=MWC>>17 ;
uint y=MWC>>17 ;
#elif TRNG == TKISS
uint x=KISS>>17 ;
uint y=KISS>>17 ;
#endif
#elif TYPE == TINT64
#define THEONE 4611686018427387904
#if TRNG == TCONG
ulong x=(ulong)(CONG>>1) ;
ulong y=(ulong)(CONG>>1) ;
#elif TRNG == TSHR3
ulong x=(ulong)(SHR3>>1) ;
ulong y=(ulong)(SHR3>>1) ;
#elif TRNG == TMWC
ulong x=(ulong)(MWC>>1) ;
ulong y=(ulong)(MWC>>1) ;
#elif TRNG == TKISS
ulong x=(ulong)(KISS>>1) ;
ulong y=(ulong)(KISS>>1) ;
#endif
#elif TYPE == TFP32
#define THEONE 1.0f
#if TRNG == TCONG
float x=CONGfp ;
float y=CONGfp ;
#elif TRNG == TSHR3
float x=SHR3fp ;
float y=SHR3fp ;
#elif TRNG == TMWC
float x=MWCfp ;
float y=MWCfp ;
#elif TRNG == TKISS
float x=KISSfp ;
float y=KISSfp ;
#endif
#elif TYPE == TFP64
#define THEONE 1.0f
#if TRNG == TCONG
double x=(double)CONGfp ;
double y=(double)CONGfp ;
#elif TRNG == TSHR3
double x=(double)SHR3fp ;
double y=(double)SHR3fp ;
#elif TRNG == TMWC
double x=(double)MWCfp ;
double y=(double)MWCfp ;
#elif TRNG == TKISS
double x=(double)KISSfp ;
double y=(double)KISSfp ;
#endif
#endif
#if TEST == IFTHEN
if ((x*x+y*y) <=THEONE) {
total+=1;
}
#else
ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
total+=inside;
#endif
}
return(total);
}
__global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
{
ulong total=MainLoop(iterations,seed_z,seed_w,blockIdx.x);
s[blockIdx.x]=total;
__syncthreads();
}
__global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
{
ulong total=MainLoop(iterations,seed_z,seed_w,threadIdx.x);
s[threadIdx.x]=total;
__syncthreads();
}
__global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
{
ulong total=MainLoop(iterations,seed_z,seed_w,blockDim.x*blockIdx.x+threadIdx.x);
s[blockDim.x*blockIdx.x+threadIdx.x]=total;
__syncthreads();
}
"""
return(KERNEL_CODE_CUDA)
def KernelCodeOpenCL():
KERNEL_CODE_OPENCL="""
#define TCONG 0
#define TSHR3 1
#define TMWC 2
#define TKISS 3
#define TINT32 0
#define TINT64 1
#define TFP32 2
#define TFP64 3
#define IFTHEN 1
// Marsaglia RNG very simple implementation
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
#define MWC (znew+wnew)
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
#define CONG (jcong=69069*jcong+1234567)
#define KISS ((MWC^CONG)+SHR3)
#define MWCfp MWC * 2.328306435454494e-10f
#define KISSfp KISS * 2.328306435454494e-10f
#define CONGfp CONG * 2.328306435454494e-10f
#define SHR3fp SHR3 * 2.328306435454494e-10f
ulong MainLoop(ulong iterations,uint seed_z,uint seed_w,size_t work)
{
#if TRNG == TCONG
uint jcong=seed_z+work;
#elif TRNG == TSHR3
uint jsr=seed_w+work;
#elif TRNG == TMWC
uint z=seed_z+work;
uint w=seed_w+work;
#elif TRNG == TKISS
uint jcong=seed_z+work;
uint jsr=seed_w+work;
uint z=seed_z-work;
uint w=seed_w-work;
#endif
ulong total=0;
for (ulong i=0;i<iterations;i++) {
#if TYPE == TINT32
#define THEONE 1073741824
#if TRNG == TCONG
uint x=CONG>>17 ;
uint y=CONG>>17 ;
#elif TRNG == TSHR3
uint x=SHR3>>17 ;
uint y=SHR3>>17 ;
#elif TRNG == TMWC
uint x=MWC>>17 ;
uint y=MWC>>17 ;
#elif TRNG == TKISS
uint x=KISS>>17 ;
uint y=KISS>>17 ;
#endif
#elif TYPE == TINT64
#define THEONE 4611686018427387904
#if TRNG == TCONG
ulong x=(ulong)(CONG>>1) ;
ulong y=(ulong)(CONG>>1) ;
#elif TRNG == TSHR3
ulong x=(ulong)(SHR3>>1) ;
ulong y=(ulong)(SHR3>>1) ;
#elif TRNG == TMWC
ulong x=(ulong)(MWC>>1) ;
ulong y=(ulong)(MWC>>1) ;
#elif TRNG == TKISS
ulong x=(ulong)(KISS>>1) ;
ulong y=(ulong)(KISS>>1) ;
#endif
#elif TYPE == TFP32
#define THEONE 1.0f
#if TRNG == TCONG
float x=CONGfp ;
float y=CONGfp ;
#elif TRNG == TSHR3
float x=SHR3fp ;
float y=SHR3fp ;
#elif TRNG == TMWC
float x=MWCfp ;
float y=MWCfp ;
#elif TRNG == TKISS
float x=KISSfp ;
float y=KISSfp ;
#endif
#elif TYPE == TFP64
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#define THEONE 1.0f
#if TRNG == TCONG
double x=(double)CONGfp ;
double y=(double)CONGfp ;
#elif TRNG == TSHR3
double x=(double)SHR3fp ;
double y=(double)SHR3fp ;
#elif TRNG == TMWC
double x=(double)MWCfp ;
double y=(double)MWCfp ;
#elif TRNG == TKISS
double x=(double)KISSfp ;
double y=(double)KISSfp ;
#endif
#endif
#if TEST == IFTHEN
if ((x*x+y*y) <= THEONE) {
total+=1;
}
#else
ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
total+=inside;
#endif
}
return(total);
}
__kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
{
ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
barrier(CLK_GLOBAL_MEM_FENCE);
s[get_global_id(0)]=total;
}
__kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
{
ulong total=MainLoop(iterations,seed_z,seed_w,get_local_id(0));
barrier(CLK_LOCAL_MEM_FENCE);
s[get_local_id(0)]=total;
}
__kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
{
ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
barrier(CLK_GLOBAL_MEM_FENCE || CLK_LOCAL_MEM_FENCE);
s[get_global_id(0)]=total;
}
"""
return(KERNEL_CODE_OPENCL)
def MetropolisCuda(InputCU):
print("Inside ",InputCU)
iterations=InputCU['Iterations']
steps=InputCU['Steps']
blocks=InputCU['Blocks']
threads=InputCU['Threads']
Device=InputCU['Device']
RNG=InputCU['RNG']
ValueType=InputCU['ValueType']
TestType=InputCU['IfThen']
Seeds=InputCU['Seeds']
Marsaglia,Computing,Test=DictionariesAPI()
try:
# For PyCUDA import
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
cuda.init()
for Id in range(cuda.Device.count()):
if Id==Device:
XPU=cuda.Device(Id)
print("GPU selected %s" % XPU.name())
print
except ImportError:
print("Platform does not seem to support CUDA")
circle=numpy.zeros(blocks*threads).astype(numpy.uint64)
circleCU = cuda.InOut(circle)
#circleCU = cuda.mem_alloc(circle.size*circle.dtype.itemize)
#cuda.memcpy_htod(circleCU, circle)
Context=XPU.make_context()
try:
mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DTRNG=%i -DTYPE=%s' % (Marsaglia[RNG],Computing[ValueType])])
#mod = SourceModule(KernelCodeCuda(),nvcc='nvcc',keep=True)
# Needed to set the compiler via ccbin for CUDA9 implementation
#mod = SourceModule(KernelCodeCuda(),options=['-ccbin','clang-3.9','--compiler-options','-DTRNG=%i' % Marsaglia[RNG],'-DTYPE=%s' % Computing[ValueType],'-DTEST=%s' % Test[TestType]],keep=True)
except:
print("Compilation seems to break")
MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
MetropolisThreadsCU=mod.get_function("MainLoopThreads")
MetropolisHybridCU=mod.get_function("MainLoopHybrid")
MyDuration=numpy.zeros(steps)
jobs=blocks*threads;
iterationsCU=numpy.uint64(iterations/jobs)
if iterations%jobs!=0:
iterationsCU+=numpy.uint64(1)
for i in range(steps):
start_time=time.time()
try:
MetropolisHybridCU(circleCU,
numpy.uint64(iterationsCU),
numpy.uint32(Seeds[0]),
numpy.uint32(Seeds[1]),
grid=(blocks,1),block=(threads,1,1))
except:
print("Crash during CUDA call")
elapsed = time.time()-start_time
print("(Blocks/Threads)=(%i,%i) method done in %.2f s..." % (blocks,threads,elapsed))
MyDuration[i]=elapsed
OutputCU={'Inside':sum(circle),'NewIterations':numpy.uint64(iterationsCU*jobs),'Duration':MyDuration}
print(OutputCU)
Context.pop()
Context.detach()
return(OutputCU)
def MetropolisOpenCL(InputCL):
import pyopencl as cl
iterations=InputCL['Iterations']
steps=InputCL['Steps']
blocks=InputCL['Blocks']
threads=InputCL['Threads']
Device=InputCL['Device']
RNG=InputCL['RNG']
ValueType=InputCL['ValueType']
TestType=InputCL['IfThen']
Seeds=InputCL['Seeds']
Marsaglia,Computing,Test=DictionariesAPI()
# Initialisation des variables en les CASTant correctement
Id=0
HasXPU=False
for platform in cl.get_platforms():
for device in platform.get_devices():
if Id==Device:
XPU=device
print("CPU/GPU selected: ",device.name.lstrip())
HasXPU=True
Id+=1
# print(Id)
if HasXPU==False:
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1))
sys.exit()
# Je cree le contexte et la queue pour son execution
try:
ctx = cl.Context(devices=[XPU])
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE)
except:
print("Crash during context creation")
# Je recupere les flag possibles pour les buffers
mf = cl.mem_flags
circle=numpy.zeros(blocks*threads).astype(numpy.uint64)
circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle)
MetropolisCL = cl.Program(ctx,KernelCodeOpenCL()).build( options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%s -DTEST=%s" % (Marsaglia[RNG],Computing[ValueType],Test[TestType]))
MyDuration=numpy.zeros(steps)
jobs=blocks*threads;
iterationsCL=numpy.uint64(iterations/jobs)
if iterations%jobs!=0:
iterationsCL+=1
for i in range(steps):
start_time=time.time()
if threads == 1:
CLLaunch=MetropolisCL.MainLoopGlobal(queue,(blocks,),None,
circleCL,
numpy.uint64(iterationsCL),
numpy.uint32(Seeds[0]),
numpy.uint32(Seeds[1]))
else:
CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,),
circleCL,
numpy.uint64(iterationsCL),
numpy.uint32(Seeds[0]),
numpy.uint32(Seeds[1]))
CLLaunch.wait()
cl.enqueue_copy(queue, circle, circleCL).wait()
elapsed = time.time()-start_time
print("(Blocks/Threads)=(%i,%i) method done in %.2f s..." % (blocks,threads,elapsed))
# Elapsed method based on CLLaunch doesn't work for Beignet OpenCL
# elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
# print circle,numpy.mean(circle),numpy.median(circle),numpy.std(circle)
MyDuration[i]=elapsed
# AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
# MyPi[i]=numpy.median(AllPi)
# print MyPi[i],numpy.std(AllPi),MyDuration[i]
circleCL.release()
OutputCL={'Inside':sum(circle),'NewIterations':numpy.uint64(iterationsCL*jobs),'Duration':MyDuration}
# print(OutputCL)
return(OutputCL)
def FitAndPrint(N,D,Curves):
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
try:
coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D)
D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2])
coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0]
coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0]
coeffs_Amdahl[0]=D[0]
print("Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]))
except:
print("Impossible to fit for Amdahl law : only %i elements" % len(D))
try:
coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D)
D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1])
coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0]
coeffs_AmdahlR[0]=D[0]
print("Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]))
except:
print("Impossible to fit for Reduced Amdahl law : only %i elements" % len(D))
try:
coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D)
coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0]
# coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0]
coeffs_Mylq[0]=D[0]
print("Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0],
coeffs_Mylq[1],
coeffs_Mylq[3],
coeffs_Mylq[2]))
D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2],
coeffs_Mylq[3])
except:
print("Impossible to fit for Mylq law : only %i elements" % len(D))
try:
coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D)
coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0]
# coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
# coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0]
coeffs_Mylq2[0]=D[0]
print("Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % (coeffs_Mylq2[0],coeffs_Mylq2[1],coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3]))
except:
print("Impossible to fit for 2nd order Mylq law : only %i elements" % len(D))
if Curves:
plt.xlabel("Number of Threads/work Items")
plt.ylabel("Total Elapsed Time")
Experience,=plt.plot(N,D,'ro')
try:
pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
except:
print("Fit curves seem not to be available")
plt.legend()
plt.show()
if __name__=='__main__':
# Set defaults values
# GPU style can be Cuda (Nvidia implementation) or OpenCL
GpuStyle='OpenCL'
# Iterations is integer
Iterations=1000000000
# BlocksBlocks in first number of Blocks to explore
BlocksBegin=1024
# BlocksEnd is last number of Blocks to explore
BlocksEnd=1024
# BlocksStep is the step of Blocks to explore
BlocksStep=1
# ThreadsBlocks in first number of Blocks to explore
ThreadsBegin=1
# ThreadsEnd is last number of Blocks to explore
ThreadsEnd=1
# ThreadsStep is the step of Blocks to explore
ThreadsStep=1
# Redo is the times to redo the test to improve metrology
Redo=1
# OutMetrology is method for duration estimation : False is GPU inside
OutMetrology=False
Metrology='InMetro'
# Curves is True to print the curves
Curves=False
# Fit is True to print the curves
Fit=False
# Inside based on If
IfThen=False
# Marsaglia RNG
RNG='MWC'
# Value type : INT32, INT64, FP32, FP64
ValueType='FP32'
# Seeds for RNG
Seeds=110271,101008
HowToUse='%s -o (Out of Core Metrology) -c (Print Curves) -k (Case On IfThen) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
try:
opts, args = getopt.getopt(sys.argv[1:],"hockg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="])
except getopt.GetoptError:
print(HowToUse % sys.argv[0])
sys.exit(2)
# List of Devices
Devices=[]
Alu={}
for opt, arg in opts:
if opt == '-h':
print(HowToUse % sys.argv[0])
print("\nInformations about devices detected under OpenCL API:")
# For PyOpenCL import
try:
import pyopencl as cl
Id=0
for platform in cl.get_platforms():
for device in platform.get_devices():
#deviceType=cl.device_type.to_string(device.type)
deviceType="xPU"
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
Id=Id+1
except:
print("Your platform does not seem to support OpenCL")
print("\nInformations about devices detected under CUDA API:")
# For PyCUDA import
try:
import pycuda.driver as cuda
cuda.init()
for Id in range(cuda.Device.count()):
device=cuda.Device(Id)
print("Device #%i of type GPU : %s" % (Id,device.name()))
print
except:
print("Your platform does not seem to support CUDA")
sys.exit()
elif opt == '-o':
OutMetrology=True
Metrology='OutMetro'
elif opt == '-c':
Curves=True
elif opt == '-k':
IfThen=True
elif opt in ("-d", "--device"):
Devices.append(int(arg))
elif opt in ("-g", "--gpustyle"):
GpuStyle = arg
elif opt in ("-m", "--marsaglia"):
RNG = arg
elif opt in ("-v", "--valuetype"):
ValueType = arg
elif opt in ("-i", "--iterations"):
Iterations = numpy.uint64(arg)
elif opt in ("-b", "--blocksbegin"):
BlocksBegin = int(arg)
BlocksEnd= BlocksBegin
elif opt in ("-e", "--blocksend"):
BlocksEnd = int(arg)
elif opt in ("-s", "--blocksstep"):
BlocksStep = int(arg)
elif opt in ("-f", "--threadsfirst"):
ThreadsBegin = int(arg)
ThreadsEnd = ThreadsBegin
elif opt in ("-l", "--threadslast"):
ThreadsEnd = int(arg)
elif opt in ("-t", "--threadsstep"):
ThreadsStep = int(arg)
elif opt in ("-r", "--redo"):
Redo = int(arg)
# If no device has been specified, take the first one!
if len(Devices)==0:
Devices.append(0)
print("Devices Identification : %s" % Devices)
print("GpuStyle used : %s" % GpuStyle)
print("Iterations : %s" % Iterations)
print("Number of Blocks on begin : %s" % BlocksBegin)
print("Number of Blocks on end : %s" % BlocksEnd)
print("Step on Blocks : %s" % BlocksStep)
print("Number of Threads on begin : %s" % ThreadsBegin)
print("Number of Threads on end : %s" % ThreadsEnd)
print("Step on Threads : %s" % ThreadsStep)
print("Number of redo : %s" % Redo)
print("Metrology done out of XPU : %r" % OutMetrology)
print("Type of Marsaglia RNG used : %s" % RNG)
print("Type of variable : %s" % ValueType)
if GpuStyle=='CUDA':
try:
# For PyCUDA import
import pycuda.driver as cuda
cuda.init()
for Id in range(cuda.Device.count()):
device=cuda.Device(Id)
print("Device #%i of type GPU : %s" % (Id,device.name()))
if Id in Devices:
Alu[Id]='GPU'
except ImportError:
print("Platform does not seem to support CUDA")
if GpuStyle=='OpenCL':
try:
# For PyOpenCL import
import pyopencl as cl
Id=0
for platform in cl.get_platforms():
for device in platform.get_devices():
#deviceType=cl.device_type.to_string(device.type)
deviceType="xPU"
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
if Id in Devices:
# Set the Alu as detected Device Type
Alu[Id]=deviceType
Id=Id+1
except ImportError:
print("Platform does not seem to support OpenCL")
#print(Devices,Alu)
BlocksList=range(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
ThreadsList=range(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
ExploredJobs=numpy.array([]).astype(numpy.uint32)
ExploredBlocks=numpy.array([]).astype(numpy.uint32)
ExploredThreads=numpy.array([]).astype(numpy.uint32)
avgD=numpy.array([]).astype(numpy.float32)
medD=numpy.array([]).astype(numpy.float32)
stdD=numpy.array([]).astype(numpy.float32)
minD=numpy.array([]).astype(numpy.float32)
maxD=numpy.array([]).astype(numpy.float32)
avgR=numpy.array([]).astype(numpy.float32)
medR=numpy.array([]).astype(numpy.float32)
stdR=numpy.array([]).astype(numpy.float32)
minR=numpy.array([]).astype(numpy.float32)
maxR=numpy.array([]).astype(numpy.float32)
for Blocks,Threads in itertools.product(BlocksList,ThreadsList):
# print Blocks,Threads
circle=numpy.zeros(Blocks*Threads).astype(numpy.uint64)
ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads)
ExploredBlocks=numpy.append(ExploredBlocks,Blocks)
ExploredThreads=numpy.append(ExploredThreads,Threads)
if OutMetrology:
DurationItem=numpy.array([]).astype(numpy.float32)
Duration=numpy.array([]).astype(numpy.float32)
Rate=numpy.array([]).astype(numpy.float32)
for i in range(Redo):
start=time.time()
if GpuStyle=='CUDA':
try:
InputCU={}
InputCU['Iterations']=Iterations
InputCU['Steps']=1
InputCU['Blocks']=Blocks
InputCU['Threads']=Threads
InputCU['Device']=Devices[0]
InputCU['RNG']=RNG
InputCU['Seeds']=Seeds
InputCU['ValueType']=ValueType
InputCU['IfThen']=IfThen
OutputCU=MetropolisCuda(InputCU)
Inside=OutputCU['Circle']
NewIterations=OutputCU['NewIterations']
Duration=OutputCU['Duration']
except:
print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
elif GpuStyle=='OpenCL':
try:
InputCL={}
InputCL['Iterations']=Iterations
InputCL['Steps']=1
InputCL['Blocks']=Blocks
InputCL['Threads']=Threads
InputCL['Device']=Devices[0]
InputCL['RNG']=RNG
InputCL['Seeds']=Seeds
InputCL['ValueType']=ValueType
InputCL['IfThen']=IfThen
OutputCL=MetropolisOpenCL(InputCL)
Inside=OutputCL['Circle']
NewIterations=OutputCL['NewIterations']
Duration=OutputCL['Duration']
except:
print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
Duration=numpy.append(Duration,time.time()-start)
Rate=numpy.append(Rate,NewIterations/Duration[-1])
else:
if GpuStyle=='CUDA':
try:
InputCU={}
InputCU['Iterations']=Iterations
InputCU['Steps']=Redo
InputCU['Blocks']=Blocks
InputCU['Threads']=Threads
InputCU['Device']=Devices[0]
InputCU['RNG']=RNG
InputCU['Seeds']=Seeds
InputCU['ValueType']=ValueType
InputCU['IfThen']=IfThen
OutputCU=MetropolisCuda(InputCU)
Inside=OutputCU['Inside']
NewIterations=OutputCU['NewIterations']
Duration=OutputCU['Duration']
pycuda.context.pop()
except:
print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
elif GpuStyle=='OpenCL':
try:
InputCL={}
InputCL['Iterations']=Iterations
InputCL['Steps']=Redo
InputCL['Blocks']=Blocks
InputCL['Threads']=Threads
InputCL['Device']=Devices[0]
InputCL['RNG']=RNG
InputCL['Seeds']=Seeds
InputCL['ValueType']=ValueType
InputCL['IfThen']=IfThen
OutputCL=MetropolisOpenCL(InputCL)
Inside=OutputCL['Inside']
NewIterations=OutputCL['NewIterations']
Duration=OutputCL['Duration']
except:
print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
Rate=NewIterations/Duration[-1]
print("Itops %i\nLogItops %.2f " % (int(Rate),numpy.log(Rate)/numpy.log(10)))
print("Pi estimation %.8f" % (4./NewIterations*Inside))
avgD=numpy.append(avgD,numpy.average(Duration))
medD=numpy.append(medD,numpy.median(Duration))
stdD=numpy.append(stdD,numpy.std(Duration))
minD=numpy.append(minD,numpy.min(Duration))
maxD=numpy.append(maxD,numpy.max(Duration))
avgR=numpy.append(avgR,numpy.average(Rate))
medR=numpy.append(medR,numpy.median(Rate))
stdR=numpy.append(stdR,numpy.std(Rate))
minR=numpy.append(minR,numpy.min(Rate))
maxR=numpy.append(maxR,numpy.max(Rate))
print("%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1]))
numpy.savez("Pi_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR))
ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ]
numpy.savetxt("Pi_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i')
if Fit:
FitAndPrint(ExploredJobs,median,Curves)