Skip to content
Snippets Groups Projects
NBody.py 29.2 KiB
Newer Older
Emmanuel QUEMENER's avatar
Emmanuel QUEMENER committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
NBody Demonstrator implemented in OpenCL, rendering OpenGL

By default, rendering in OpenGL is disabled. Add -g option to activate.

Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/

CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com> 
Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>

Thanks to Andreas Klockner for PyOpenCL:
http://mathema.tician.de/software/pyopencl
 
"""
import getopt
import sys
import time
import numpy as np
import pyopencl as cl
import pyopencl.array as cl_array
from numpy.random import randint as nprnd
import string, sys

def DictionariesAPI():
    Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3}
    Computing={'FP32':0,'FP64':1}
    Interaction={'Force':0,'Potential':1}
    Artevasion={'None':0,'NegExp':1,'CorRad':2}
    return(Marsaglia,Computing,Interaction,Artevasion)

BlobOpenCL= """
#define TFP32 0
#define TFP64 1

#define TFORCE 0
#define TPOTENTIAL 1

#define NONE 0
#define NEGEXP 1
#define CORRAD 2

#if TYPE == TFP32
#define MYFLOAT4 float4
#define MYFLOAT8 float8
#define MYFLOAT float
#define DISTANCE fast_distance
#else
#define MYFLOAT4 double4
#define MYFLOAT8 double8
#define MYFLOAT double
#define DISTANCE distance
#if defined(cl_khr_fp64)  // Khronos extension available?
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
#endif

#define znew  ((zmwc=36969*(zmwc&65535)+(zmwc>>16))<<16)
#define wnew  ((wmwc=18000*(wmwc&65535)+(wmwc>>16))&65535)
#define MWC   (znew+wnew)
#define SHR3  (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
#define CONG  (jcong=69069*jcong+1234567)
#define KISS  ((MWC^CONG)+SHR3)

#define MWCfp (MYFLOAT)(MWC * 2.3283064365386963e-10f)
#define KISSfp (MYFLOAT)(KISS * 2.3283064365386963e-10f)
#define SHR3fp (MYFLOAT)(SHR3 * 2.3283064365386963e-10f)
#define CONGfp (MYFLOAT)(CONG * 2.3283064365386963e-10f)

#define PI (MYFLOAT)3.141592653589793238e0f

#define SMALL_NUM (MYFLOAT)1.e-9f

#define CoreRadius (MYFLOAT)(1.e0f)

// Create my own Distance implementation: distance buggy on Oland AMD chipset

MYFLOAT MyDistance(MYFLOAT4 n,MYFLOAT4 m)
{
    private MYFLOAT x2,y2,z2;
    x2=n.s0-m.s0;
    x2*=x2;
    y2=n.s1-m.s1;
    y2*=y2;
    z2=n.s2-m.s2;
    z2*=z2;
    return(sqrt(x2+y2+z2));
}

// Potential between 2 m,n bodies
MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
#if ARTEVASION == NEGEXP
// Add exp(-r) to numerator to avoid divergence for low distances
{
    MYFLOAT r=DISTANCE(n,m);
    return((-1.e0f+exp(-r))/r);
}
#elif ARTEVASION == CORRAD
// Add Core Radius to avoid divergence for low distances
{
    MYFLOAT r=DISTANCE(n,m);
    return(-1.e0f/sqrt(r*r+CoreRadius*CoreRadius));
}
#else
// Classical potential in 1/r
{
//    return((MYFLOAT)(-1.e0f)/(MyDistance(m,n)));
    return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
}
#endif

// Interaction based of Force as gradient of Potential
MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
#if INTERACTION == TFORCE
#if ARTEVASION == NEGEXP
// Force gradient of potential, set as (1-exp(-r))/r 
{
    private MYFLOAT r=MyDistance(n,m);
    private MYFLOAT num=1.e0f+exp(-r)*(r-1.e0f);
    return((n-m)*num/(MYFLOAT)(r*r*r));
}
#elif ARTEVASION == CORRAD
// Force gradient of potential, (Core Radius) set as 1/sqrt(r**2+CoreRadius**2) 
{
    private MYFLOAT r=MyDistance(n,m);
    private MYFLOAT den=sqrt(r*r+CoreRadius*CoreRadius);
    return((n-m)/(MYFLOAT)(den*den*den));
}
#else
// Simplest implementation of force (equals to acceleration)
// seems to bo bad (numerous artevasions)
// MYFLOAT4 InteractionForce(MYFLOAT4 m,MYFLOAT4 n)
{
    private MYFLOAT r=MyDistance(n,m);
    return((n-m)/(MYFLOAT)(r*r*r));
}
#endif
#else
// Force definited as gradient of potential
// Estimate potential and proximate potential to estimate force
{
    // 1/1024 seems to be a good factor: larger one provides bad results
    private MYFLOAT epsilon=(MYFLOAT)(1.e0f/1024);
    private MYFLOAT4 er=normalize(n-m);
    private MYFLOAT4 dr=er*(MYFLOAT)epsilon;

    return(er/epsilon*(PairPotential(m,n)-PairPotential(m+dr,n)));
}
#endif

MYFLOAT AtomicPotential(__global MYFLOAT4* clDataX,int gid)
{
    private MYFLOAT potential=(MYFLOAT)0.e0f;
    private MYFLOAT4 x=clDataX[gid]; 
    
    for (int i=0;i<get_global_size(0);i++)
    {
        if (gid != i)
        potential+=PairPotential(x,clDataX[i]);
    }

    barrier(CLK_GLOBAL_MEM_FENCE);
    return(potential);
}

MYFLOAT AtomicPotentialCoM(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int gid)
{
    return(PairPotential(clDataX[gid],clCoM[0]));
}

// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html

MYFLOAT8 AtomicRungeKutta(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
    private MYFLOAT4 a0,v0,x0,a1,v1,x1,a2,v2,x2,a3,v3,x3,a4,v4,x4,xf,vf;
    MYFLOAT4 DT=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);

    a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
    v0=(MYFLOAT4)clDataInV[gid];
    x0=(MYFLOAT4)clDataInX[gid];
    int N = get_global_size(0);    
    
    for (private int i=0;i<N;i++)
    {
        if (gid != i)
        a0+=Interaction(x0,clDataInX[i]);
    }
        
    a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
    v1=a0*dt+v0;
    x1=v0*dt+x0;
    for (private int j=0;j<N;j++)
    {
        if (gid != j)
        a1+=Interaction(x1,clDataInX[j]);
    }

    a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
    v2=a1*(MYFLOAT)(dt/2.e0f)+v0;
    x2=v1*(MYFLOAT)(dt/2.e0f)+x0;
    for (private int k=0;k<N;k++)
    {
        if (gid != k)
        a2+=Interaction(x2,clDataInX[k]);
    }
    
    a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
    v3=a2*(MYFLOAT)(dt/2.e0f)+v0;
    x3=v2*(MYFLOAT)(dt/2.e0f)+x0;
    for (private int l=0;l<N;l++)
    {
        if (gid != l)
        a3+=Interaction(x3,clDataInX[l]);
    }
    
    a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
    v4=a3*dt+v0;
    x4=v3*dt+x0;
    for (private int m=0;m<N;m++)
    {
        if (gid != m)
        a4+=Interaction(x4,clDataInX[m]);
    }
    
    xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
    vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
     
    return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}

MYFLOAT8 AtomicHeun(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
    private MYFLOAT4 x0,v0,a0,x1,v1,a1,xf,vf;
    MYFLOAT4 Dt=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);

    x0=(MYFLOAT4)clDataInX[gid];
    v0=(MYFLOAT4)clDataInV[gid];
    a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);

    for (private int i=0;i<get_global_size(0);i++)
    {
        if (gid != i)
        a0+=Interaction(x0,clDataInX[i]);
    }

    a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
    //v1=v0+dt*a0;
    //x1=x0+dt*v0;
    v1=dt*a0+v0;
    x1=dt*v0+x0;

    for (private int j=0;j<get_global_size(0);j++)
    {
        if (gid != j)
        a1+=Interaction(x1,clDataInX[j]);
    }

    vf=v0+dt*(a0+a1)/(MYFLOAT)2.e0f;
    xf=x0+dt*(v0+v1)/(MYFLOAT)2.e0f;

    return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}

MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
    MYFLOAT4 x0,v0,a,xf,vf;

    x0=(MYFLOAT4)clDataInX[gid];
    v0=(MYFLOAT4)clDataInV[gid];
    a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);

    for (private int i=0;i<get_global_size(0);i++)
    {
        if (gid != i)
          a+=Interaction(x0,clDataInX[i]);
    }
       
    vf=v0+dt*a;
    xf=x0+dt*vf;

    return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}

MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
{
    MYFLOAT4 x0,v0,a,xf,vf;

    x0=(MYFLOAT4)clDataInX[gid];
    v0=(MYFLOAT4)clDataInV[gid];
    a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);

    for (private int i=0;i<get_global_size(0);i++)
    {
        if (gid != i)
        a+=Interaction(x0,clDataInX[i]);
    }
       
    vf=v0+dt*a;
    xf=x0+dt*v0;
 
    return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
}

__kernel void InBallSplutterPoints(__global MYFLOAT4* clDataX, 
                                   MYFLOAT diameter,uint seed_z,uint seed_w)
{
    private int gid=get_global_id(0);
    private uint zmwc=seed_z+gid;
    private uint wmwc=seed_w+(gid+1)%2;
    private MYFLOAT Heat;
 
    for (int i=0;i<gid;i++)
    {
        Heat=MWCfp;
    }

// More accurate distribution based on spherical coordonates
// Disactivated because of AMD Oland GPU crash on launch
//     private MYFLOAT Radius,Theta,Phi,PosX,PosY,PosZ,SinTheta;
//     Radius=MWCfp*diameter/2.e0f;
//     Theta=(MYFLOAT)acos((float)(-2.e0f*MWCfp+1.0e0f));
//     Phi=(MYFLOAT)(2.e0f*PI*MWCfp);
//     SinTheta=sin((float)Theta);
//     PosX=cos((float)Phi)*Radius*SinTheta;
//     PosY=sin((float)Phi)*Radius*SinTheta;
//     PosZ=cos((float)Theta)*Radius;
//     clDataX[gid]=(MYFLOAT4)(PosX,PosY,PosZ,0.e0f);

    private MYFLOAT Radius=diameter/2.e0f;
    private MYFLOAT Length=diameter;
    private MYFLOAT4 Position;
    while (Length>Radius) {
       Position=(MYFLOAT4)((MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,0.e0f);
       Length=(MYFLOAT)length((MYFLOAT4)Position);
    }

    clDataX[gid]=Position;    

    barrier(CLK_GLOBAL_MEM_FENCE);
}

__kernel void InBoxSplutterPoints(__global MYFLOAT4* clDataX, MYFLOAT box, 
                             uint seed_z,uint seed_w)
{
    int gid=get_global_id(0);
    uint zmwc=seed_z+gid;
    uint wmwc=seed_w-gid;
    private MYFLOAT Heat;
 
    for (int i=0;i<gid;i++)
    {
        Heat=MWCfp;
    }

    clDataX[gid]=(MYFLOAT4)((MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,0.e0f);

    barrier(CLK_GLOBAL_MEM_FENCE);
}

__kernel void SplutterStress(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
{
    int gid = get_global_id(0);
    MYFLOAT N = (MYFLOAT)get_global_size(0);
    uint zmwc=seed_z+(uint)gid;
    uint wmwc=seed_w-(uint)gid;
    MYFLOAT4 CrossVector,SpeedVector,FromCoM;
    MYFLOAT Heat,ThetaA,PhiA,ThetaB,PhiB,Length,tA,tB,Polar;

    for (int i=0;i<gid;i++)
    {
        Heat=MWCfp;
    }

    // cast to float for sin,cos are NEEDED by Mesa FP64 implementation!
    // Implemention on AMD Oland are probably broken in float

    FromCoM=(MYFLOAT4)(clDataX[gid]-clCoM[0]);
    Length=length(FromCoM);
    //Theta=acos(FromCoM.z/Length);
    //Phi=atan(FromCoM.y/FromCoM.x);
    // First tangential vector to sphere of length radius
    ThetaA=acos(FromCoM.x/Length)+5.e-1f*PI;
    PhiA=atan(FromCoM.y/FromCoM.z);
    // Second tangential vector to sphere of length radius
    ThetaB=acos((float)(FromCoM.x/Length));
    PhiB=atan((float)(FromCoM.y/FromCoM.z))+5.e-1f*PI;
    // (x,y) random coordonates to plane tangential to sphere
    Polar=MWCfp*2.e0f*PI;
    tA=cos((float)Polar);
    tB=sin((float)Polar);

    // Exception for 2 particules to ovoid shifting
    if (get_global_size(0)==2) {
       CrossVector=(MYFLOAT4)(1.e0f,1.e0f,1.e0f,0.e0f);
    } else {
       CrossVector.s0=tA*cos((float)ThetaA)+tB*cos((float)ThetaB);
       CrossVector.s1=tA*sin((float)ThetaA)*sin((float)PhiA)+tB*sin((float)ThetaB)*sin((float)PhiB);
       CrossVector.s2=tA*sin((float)ThetaA)*cos((float)PhiA)+tB*sin((float)ThetaB)*cos((float)PhiB);
       CrossVector.s3=0.e0f;
    }

    if (velocity<SMALL_NUM) {
       SpeedVector=(MYFLOAT4)normalize(cross(FromCoM,CrossVector))*sqrt((-AtomicPotential(clDataX,gid)/(MYFLOAT)2.e0f));
    }
    else
    {

       SpeedVector=(MYFLOAT4)((MWCfp-5e-1f)*velocity,(MWCfp-5e-1f)*velocity,
                              (MWCfp-5e-1f)*velocity,0.e0f);
    }
    clDataV[gid]=SpeedVector;
    barrier(CLK_GLOBAL_MEM_FENCE);
}

__kernel void RungeKutta(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
    private int gid = get_global_id(0);
    private MYFLOAT8 clDataGid;
    
    clDataGid=AtomicRungeKutta(clDataX,clDataV,gid,h);
    barrier(CLK_GLOBAL_MEM_FENCE);
    clDataX[gid]=clDataGid.s0123;
    clDataV[gid]=clDataGid.s4567;
}

__kernel void Heun(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
    private int gid = get_global_id(0);
    private MYFLOAT8 clDataGid;
    
    clDataGid=AtomicHeun(clDataX,clDataV,gid,h);
    barrier(CLK_GLOBAL_MEM_FENCE);
    clDataX[gid]=clDataGid.s0123;
    clDataV[gid]=clDataGid.s4567;
}

__kernel void ImplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
    private int gid = get_global_id(0);
    private MYFLOAT8 clDataGid;
    
    clDataGid=AtomicImplicitEuler(clDataX,clDataV,gid,h);
    barrier(CLK_GLOBAL_MEM_FENCE);
    clDataX[gid]=clDataGid.s0123;
    clDataV[gid]=clDataGid.s4567;
}

__kernel void ExplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
{
    private int gid = get_global_id(0);
    private MYFLOAT8 clDataGid;    

    clDataGid=AtomicExplicitEuler(clDataX,clDataV,gid,h);
    barrier(CLK_GLOBAL_MEM_FENCE);
    clDataX[gid]=clDataGid.s0123;
    clDataV[gid]=clDataGid.s4567;
}

__kernel void CoMPotential(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
{
    int gid = get_global_id(0);

    clPotential[gid]=PairPotential(clDataX[gid],clCoM[0]);
}

__kernel void Potential(__global MYFLOAT4* clDataX,__global MYFLOAT* clPotential)
{
    int gid = get_global_id(0);

    MYFLOAT potential=(MYFLOAT)0.e0f;
    MYFLOAT4 x=clDataX[gid]; 
    
    for (int i=0;i<get_global_size(0);i++)
    {
        if (gid != i)
        potential+=PairPotential(x,clDataX[i]);
    }
                 
    barrier(CLK_GLOBAL_MEM_FENCE);
    clPotential[gid]=potential*(MYFLOAT)5.e-1f;
}

__kernel void CenterOfMass(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int Size)
{
    MYFLOAT4 CoM=clDataX[0]; 

    for (int i=1;i<Size;i++)
    {
        CoM+=clDataX[i];
    }

    barrier(CLK_GLOBAL_MEM_FENCE);
    clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0.e0f)/(MYFLOAT)Size;
}

__kernel void Kinetic(__global MYFLOAT4* clDataV,__global MYFLOAT* clKinetic)
{
    int gid = get_global_id(0);
    
    barrier(CLK_GLOBAL_MEM_FENCE);
    MYFLOAT d=(MYFLOAT)length(clDataV[gid]);
    clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)(d*d);
}

"""

def MainOpenCL(clDataX,clDataV,Step,Method):
    time_start=time.time()
    if Method=="RungeKutta":
        CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clDataX,clDataV,Step)
    elif Method=="ExplicitEuler":
        CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step)
    elif Method=="Heun":
        CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clDataX,clDataV,Step)
    else:
        CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step)
    CLLaunch.wait()
    Elapsed=time.time()-time_start
    return(Elapsed)
    
def display(*args):

    global MyDataX,MyDataV,clDataX,clDataV,Step,Method,Number,Iterations,Durations,Verbose,SpeedRendering
    
    glClearColor(0.0, 0.0, 0.0, 0.0)
    glClear(GL_COLOR_BUFFER_BIT)
    glColor3f(1.0,1.0,1.0)
    
    Elapsed=MainOpenCL(clDataX,clDataV,Step,Method)
    if SpeedRendering:
        cl.enqueue_copy(queue, MyDataV, clDataV)
        MyDataV.reshape(Number,4)[:,3]=1
        glVertexPointerf(MyDataV.reshape(Number,4))
    else:
        cl.enqueue_copy(queue, MyDataX, clDataX)
        MyDataX.reshape(Number,4)[:,3]=1
        glVertexPointerf(MyDataX.reshape(Number,4))

    if Verbose:
        print("Positions for #%s iteration: %s" % (Iterations,MyDataX))
    else:
        sys.stdout.write('.')
        sys.stdout.flush()
    Durations=np.append(Durations,MainOpenCL(clDataX,clDataV,Step,Method))    
    glEnableClientState(GL_VERTEX_ARRAY)
    glDrawArrays(GL_POINTS, 0, Number)
    glDisableClientState(GL_VERTEX_ARRAY)
    glFlush()
    Iterations+=1
    glutSwapBuffers()

def halt():
    pass

def keyboard(k,x,y):
    global ViewRZ,SpeedRendering
    LC_Z = as_8_bit( 'z' )
    UC_Z = as_8_bit( 'Z' )
    Plus = as_8_bit( '+' )
    Minus = as_8_bit( '-' )
    Switch = as_8_bit( 's' )

    Zoom=1
    if k == LC_Z:
        ViewRZ += 1.0
    elif k == UC_Z:
        ViewRZ -= 1.0
    elif k == Plus:
        Zoom *= 2.0
    elif k == Minus:
        Zoom /= 2.0
    elif k == Switch:
        if SpeedRendering:
            SpeedRendering=False
        else:
            SpeedRendering=True
    elif ord(k) == 27: # Escape
        glutLeaveMainLoop()
        return(False)
    else:
        return
    glRotatef(ViewRZ, 0.0, 0.0, 1.0)
    glScalef(Zoom,Zoom,Zoom)
    glutPostRedisplay()

def special(k,x,y):
    global ViewRX, ViewRY

    Step=1.
    if k == GLUT_KEY_UP:
        ViewRX += Step
    elif k == GLUT_KEY_DOWN:
        ViewRX -= Step
    elif k == GLUT_KEY_LEFT:
        ViewRY += Step
    elif k == GLUT_KEY_RIGHT:
        ViewRY -= Step
    else:
        return
    glRotatef(ViewRX, 1.0, 0.0, 0.0)
    glRotatef(ViewRY, 0.0, 1.0, 0.0)
    glutPostRedisplay()

def setup_viewport():
    global SizeOfBox
    glMatrixMode(GL_PROJECTION)
    glLoadIdentity()
    glOrtho(-SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox)
    glutPostRedisplay()
    
def reshape(w, h):
    glViewport(0, 0, w, h)
    setup_viewport()

if __name__=='__main__':

    global Number,Step,clDataX,clDataV,MyDataX,MyDataV,Method,SizeOfBox,Iterations,Verbose,Durations
    
    # ValueType
    ValueType='FP32'
    class MyFloat(np.float32):pass
    #    clType8=cl_array.vec.float8
    # Set defaults values
    np.set_printoptions(precision=2)  
    # Id of Device : 1 is for first find !
    Device=0
    # Number of bodies is integer
    Number=2
    # Number of iterations (for standalone execution)
    Iterations=10
    # Size of shape
    SizeOfShape=MyFloat(1.)
    # Initial velocity of particules
    Velocity=MyFloat(1.)
    # Step
    Step=MyFloat(1./32)
    # Method of integration
    Method='ImplicitEuler'
    # InitialRandom
    InitialRandom=False
    # RNG Marsaglia Method
    RNG='MWC'
    # Viriel Distribution of stress
    VirielStress=True
    # Verbose
    Verbose=False
    # OpenGL real time rendering
    OpenGL=False
    # Speed rendering
    SpeedRendering=False
    # Counter ArtEvasions Measures (artefact evasion)
    CoArEv='None'
    # Shape to distribute
    Shape='Ball'
    # Type of Interaction
    InterType='Force'
    
    HowToUse='%s -h [Help] -r [InitialRandom] -g [OpenGL] -e [VirielStress] -o [Verbose] -p [Potential] -x <None|NegExp|CorRad> -d <DeviceId> -n <NumberOfParticules> -i <Iterations> -z <SizeOfBoxOrBall> -v <Velocity> -s <Step> -b <Ball|Box> -m <ImplicitEuler|RungeKutta|ExplicitEuler|Heun> -t <FP32|FP64>'

    try:
        opts, args = getopt.getopt(sys.argv[1:],"rpgehod:n:i:z:v:s:m:t:b:x:",["random","potential","coarev","opengl","viriel","verbose","device=","number=","iterations=","size=","velocity=","step=","method=","valuetype=","shape="])
    except getopt.GetoptError:
        print(HowToUse % sys.argv[0])
        sys.exit(2)

    for opt, arg in opts:
        if opt == '-h':
            print(HowToUse % sys.argv[0])

            print("\nInformations about devices detected under OpenCL:")
            try:
                Id=0
                for platform in cl.get_platforms():
                    for device in platform.get_devices():
                        # Failed now because of POCL implementation
                        #deviceType=cl.device_type.to_string(device.type)
                        deviceType="xPU"
                        print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
                        Id=Id+1
                sys.exit()
            except ImportError:
                print("Your platform does not seem to support OpenCL")
                sys.exit()

        elif opt in ("-t", "--valuetype"):
            if arg=='FP64':
                class MyFloat(np.float64): pass
            else:
                class MyFloat(np.float32):pass
            ValueType = arg
        elif opt in ("-d", "--device"):
            Device=int(arg)
        elif opt in ("-m", "--method"):
            Method=arg
        elif opt in ("-b", "--shape"):
            Shape=arg
            if Shape!='Ball' or Shape!='Box':
                print('Wrong argument: set to Ball')
        elif opt in ("-n", "--number"):
            Number=int(arg)
        elif opt in ("-i", "--iterations"):
            Iterations=int(arg)
        elif opt in ("-z", "--size"):
            SizeOfShape=MyFloat(arg)
        elif opt in ("-v", "--velocity"):
            Velocity=MyFloat(arg)
            VirielStress=False
        elif opt in ("-s", "--step"):
            Step=MyFloat(arg)
        elif opt in ("-r", "--random"):
            InitialRandom=True
        elif opt in ("-c", "--check"):
            CheckEnergies=True
        elif opt in ("-e", "--viriel"):
            VirielStress=True
        elif opt in ("-g", "--opengl"):
            OpenGL=True
        elif opt in ("-p", "--potential"):
            InterType='Potential'
        elif opt in ("-x", "--coarev"):
            CoArEv=arg
        elif opt in ("-o", "--verbose"):
            Verbose=True

    SizeOfShape=np.sqrt(MyFloat(SizeOfShape*Number))
    Velocity=MyFloat(Velocity)
    Step=MyFloat(Step)
                
    print("Device choosed : %s" % Device)
    print("Number of particules : %s" % Number)
    print("Size of Shape : %s" % SizeOfShape)
    print("Initial velocity : %s" % Velocity)
    print("Step of iteration : %s" % Step)
    print("Number of iterations : %s" % Iterations)
    print("Method of resolution : %s" % Method)
    print("Initial Random for RNG Seed : %s" % InitialRandom)
    print("ValueType is : %s" % ValueType)
    print("Viriel distribution of stress : %s" % VirielStress)
    print("OpenGL real time rendering : %s" % OpenGL)
    print("Speed rendering : %s" % SpeedRendering)
    print("Interaction type : %s" % InterType)
    print("Counter Artevasion type : %s" % CoArEv)

    # Create Numpy array of CL vector with 8 FP32    
    MyCoM = np.zeros(4,dtype=MyFloat)
    MyDataX = np.zeros(Number*4, dtype=MyFloat)
    MyDataV = np.zeros(Number*4, dtype=MyFloat)
    MyPotential = np.zeros(Number, dtype=MyFloat)
    MyKinetic = np.zeros(Number, dtype=MyFloat)

    Marsaglia,Computing,Interaction,Artevasion=DictionariesAPI()

    # Scan the OpenCL arrays
    Id=0
    HasXPU=False
    for platform in cl.get_platforms():
        for device in platform.get_devices():
            if Id==Device:
                PlatForm=platform
                XPU=device
                print("CPU/GPU selected: ",device.name.lstrip())
                print("Platform selected: ",platform.name)
                HasXPU=True
            Id+=1

    if HasXPU==False:
        print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1))
        sys.exit()      

    # Create Context
    try:
        ctx = cl.Context([XPU])
        queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE)
    except:
        print("Crash during context creation")

    # Build all routines used for the computing

    #BuildOptions="-cl-mad-enable -cl-kernel-arg-info -cl-fast-relaxed-math -cl-std=CL1.2 -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
    BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i -DINTERACTION=%i -DARTEVASION=%i" % (Marsaglia[RNG],Computing[ValueType],Interaction[InterType],Artevasion[CoArEv])

    if 'Intel' in PlatForm.name or 'Experimental' in PlatForm.name or 'Clover' in PlatForm.name or 'Portable' in PlatForm.name :
        MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions)
    else:
        MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
        
    mf = cl.mem_flags
    # Read/Write approach for buffering
    clDataX = cl.Buffer(ctx, mf.READ_WRITE, MyDataX.nbytes)
    clDataV = cl.Buffer(ctx, mf.READ_WRITE, MyDataV.nbytes)
    clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes)
    clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes)
    clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes)
    
    # Write/HostPointer approach for buffering
    # clDataX = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataX)
    # clDataV = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataV)
    # clPotential = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyPotential)
    # clKinetic = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyKinetic)
    # clCoM = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyCoM)

    print('All particles superimposed.')

    # Set particles to RNG points
    if InitialRandom:
        seed_w=np.uint32(nprnd(2**32))
        seed_z=np.uint32(nprnd(2**32))
    else:
        seed_w=np.uint32(19710211)
        seed_z=np.uint32(20081010)
            
    if Shape=='Ball':
        MyRoutines.InBallSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z)
    else:
        MyRoutines.InBoxSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z)

    print('All particules distributed')

    CLLaunch=MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number))
    CLLaunch.wait()
    cl.enqueue_copy(queue,MyCoM,clCoM)
    print('Center Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2]))
    
    if VirielStress:
        CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173))
    else:
        CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,Velocity,np.uint32(110271),np.uint32(250173))
    CLLaunch.wait()

    print('All particules stressed')

    CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential)
    CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic)
    CLLaunch.wait()
    cl.enqueue_copy(queue,MyPotential,clPotential)
    cl.enqueue_copy(queue,MyKinetic,clKinetic)
    print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic)))

    if SpeedRendering:
        SizeOfBox=max(2*MyKinetic)
    else:
        SizeOfBox=SizeOfShape        
    
    if OpenGL:
        print('\tTiny documentation to interact OpenGL rendering:\n')
        print('\t<Left|Right> Rotate around X axis')
        print('\t  <Up|Down>  Rotate around Y axis')
        print('\t   <z|Z>     Rotate around Z axis')
        print('\t   <-|+>     Unzoom/Zoom')
        print('\t    <s>      Toggle to display Positions or Velocities')
        print('\t   <Esc>     Quit\n')
    
    wall_time_start=time.time()

    Durations=np.array([],dtype=MyFloat)
    print('Starting!')
    if OpenGL:
        from OpenGL.GL import *
        from OpenGL.GLUT import *
Emmanuel QUEMENER's avatar
Emmanuel QUEMENER committed
        global ViewRX,ViewRY,ViewRZ
        Iterations=0
        ViewRX,ViewRY,ViewRZ = 0.,0.,0.
        # Launch OpenGL Loop
        glutInit(sys.argv)
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB)
        glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE,GLUT_ACTION_CONTINUE_EXECUTION)
        glutInitWindowSize(512,512)
        glutCreateWindow(b'NBodyGL')
        setup_viewport()
        glutReshapeFunc(reshape)
        glutDisplayFunc(display)
        glutIdleFunc(display)
        #   glutMouseFunc(mouse)
        glutSpecialFunc(special)
        glutKeyboardFunc(keyboard)
        glutMainLoop()
    else:
        for iteration in range(Iterations):
            Elapsed=MainOpenCL(clDataX,clDataV,Step,Method)
            if Verbose:
                # print("Duration of #%s iteration: %s" % (iteration,Elapsed))
                cl.enqueue_copy(queue, MyDataX, clDataX)
                print("Positions for #%s iteration: %s" % (iteration,MyDataX))
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
            Durations=np.append(Durations,Elapsed)

    print('\nEnding!')
            
    MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number))
    CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential)
    CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic)
    CLLaunch.wait()
    cl.enqueue_copy(queue,MyCoM,clCoM)
    cl.enqueue_copy(queue,MyPotential,clPotential)
    cl.enqueue_copy(queue,MyKinetic,clKinetic)
    print('\nCenter Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2]))
    print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic)))

    print("Duration stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n\n\tVariability:\t%s\n" % (Device,Iterations,np.mean(Durations),np.median(Durations),np.std(Durations),np.min(Durations),np.max(Durations),np.std(Durations)/np.median(Durations)))

    # FPS: 1/Elapsed
    FPS=np.ones(len(Durations))
    FPS/=Durations

    print("FPS stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n" % (Device,Iterations,np.mean(FPS),np.median(FPS),np.std(FPS),np.min(FPS),np.max(FPS)))

    # Contraction of Square*Size*Hertz: Size*Size/Elapsed
    Squertz=np.ones(len(Durations))
    Squertz*=Number*Number
    Squertz/=Durations

    print("Squertz in log10 & complete stats on device %s with %s iterations :\n\tMean:\t%s\t%s\n\tMedian:\t%s\t%s\n\tStddev:\t%s\t%s\n\tMin:\t%s\t%s\n\tMax:\t%s\t%s\n" % (Device,Iterations,np.log10(np.mean(Squertz)),np.mean(Squertz),np.log10(np.median(Squertz)),np.median(Squertz),np.log10(np.std(Squertz)),np.std(Squertz),np.log10(np.min(Squertz)),np.min(Squertz),np.log10(np.max(Squertz)),np.max(Squertz)))
        
    clDataX.release()
    clDataV.release()
    clKinetic.release()
    clPotential.release()