Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
grudge
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Andreas Klöckner
grudge
Commits
91eb554a
Commit
91eb554a
authored
3 years ago
by
Thomas Gibson
Browse files
Options
Downloads
Patches
Plain Diff
Move dt functions into dt_utils and add non geometric factor routine
parent
f14e3126
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
grudge/dt_finding.py
+0
-92
0 additions, 92 deletions
grudge/dt_finding.py
grudge/dt_utils.py
+170
-0
170 additions, 0 deletions
grudge/dt_utils.py
with
170 additions
and
92 deletions
grudge/dt_finding.py
deleted
100644 → 0
+
0
−
92
View file @
f14e3126
"""
Helpers for estimating a stable time step.
"""
__copyright__
=
"
Copyright (C) 2015 Andreas Kloeckner
"
__license__
=
"""
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the
"
Software
"
), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED
"
AS IS
"
, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from
pytools
import
memoize_on_first_arg
from
meshmode.discretization.poly_element
import
PolynomialWarpAndBlendElementGroup
import
numpy.linalg
as
la
class
WarpAndBlendTimestepInfo
:
@staticmethod
def
dt_non_geometric_factor
(
discr
,
grp
):
if
grp
.
dim
==
1
:
if
grp
.
order
==
0
:
return
1
else
:
unodes
=
grp
.
unit_nodes
return
la
.
norm
(
unodes
[
0
]
-
unodes
[
1
])
*
0.85
else
:
unodes
=
grp
.
unit_nodes
vertex_indices
=
grp
.
vertex_indices
()
return
2
/
3
*
\
min
(
min
(
min
(
la
.
norm
(
unodes
[
face_node_index
]
-
unodes
[
vertex_index
])
for
vertex_index
in
vertex_indices
if
vertex_index
!=
face_node_index
)
for
face_node_index
in
face_indices
)
for
face_indices
in
self
.
face_indices
())
@staticmethod
def
dt_geometric_factor
(
discr
,
grp
):
if
grp
.
dim
==
1
:
return
abs
(
el
.
map
.
jacobian
())
elif
grp
.
dim
==
2
:
area
=
abs
(
2
*
el
.
map
.
jacobian
())
semiperimeter
=
sum
(
la
.
norm
(
vertices
[
vi1
]
-
vertices
[
vi2
])
for
vi1
,
vi2
in
[(
0
,
1
),
(
1
,
2
),
(
2
,
0
)])
/
2
return
area
/
semiperimeter
elif
grp
.
dim
==
3
:
result
=
abs
(
el
.
map
.
jacobian
())
/
max
(
abs
(
fj
)
for
fj
in
el
.
face_jacobians
)
if
grp
.
order
in
[
1
,
2
]:
from
warnings
import
warn
warn
(
"
cowardly halving timestep for order 1 and 2 tets
"
"
to avoid CFL issues
"
)
result
/=
2
return
result
else
:
raise
NotImplementedError
(
"
cannot estimate timestep for
"
"
%d-dimensional elements
"
%
grp
.
dim
)
_GROUP_TYPE_TO_INFO
=
{
PolynomialWarpAndBlendElementGroup
:
WarpAndBlendTimestepInfo
}
@memoize_on_first_arg
def
dt_non_geometric_factor
(
discr
):
return
min
(
_GROUP_TYPE_TO_INFO
[
type
(
grp
)].
dt_non_geometric_factor
(
discr
,
grp
)
for
grp
in
discr
.
groups
)
@memoize_on_first_arg
def
dt_geometric_factor
(
discr
):
return
min
(
_GROUP_TYPE_TO_INFO
[
type
(
grp
)].
dt_geometric_factor
(
discr
,
grp
)
for
grp
in
discr
.
groups
)
This diff is collapsed.
Click to expand it.
grudge/dt_utils.py
0 → 100644
+
170
−
0
View file @
91eb554a
"""
Helper functions for estimating stable time steps for RKDG methods.
.. autofunction:: dt_non_geometric_factor
"""
__copyright__
=
"""
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__
=
"""
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the
"
Software
"
), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED
"
AS IS
"
, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import
numpy
as
np
from
arraycontext
import
rec_map_array_container
from
functools
import
reduce
from
grudge.dof_desc
import
DD_VOLUME
from
grudge.geometry
import
forward_metric_derivative_mat
from
grudge.discretization
import
DiscretizationCollection
from
pytools
import
memoize_on_first_arg
@memoize_on_first_arg
def
dt_non_geometric_factor
(
dcoll
:
DiscretizationCollection
,
dd
=
None
)
->
float
:
r
"""
Computes the non-geometric scale factor:
.. math::
\frac{2}{3}\operatorname{min}_i\left( \Delta r_i \right),
where :math:`\Delta r_i` denotes the distance between two distinct
nodes on the reference element.
:arg dd: a :class:`~grudge.dof_desc.DOFDesc`, or a value convertible to one.
Defaults to the base volume discretization if not provided.
:returns: a :class:`float` denoting the minimum node distance on the
reference element.
"""
if
dd
is
None
:
dd
=
DD_VOLUME
discr
=
dcoll
.
discr_from_dd
(
dd
)
min_delta_rs
=
[]
for
mgrp
in
discr
.
mesh
.
groups
:
nodes
=
np
.
asarray
(
list
(
zip
(
*
mgrp
.
unit_nodes
)))
nnodes
=
mgrp
.
nunit_nodes
# NOTE: order 0 elements have 1 node located at the centroid of
# the reference element and is equidistant from each vertex
if
mgrp
.
order
==
0
:
assert
nnodes
==
1
min_delta_rs
.
append
(
2
/
3
*
np
.
linalg
.
norm
(
nodes
[
0
]
-
mgrp
.
vertex_unit_coordinates
()[
0
])
)
else
:
min_delta_rs
.
append
(
2
/
3
*
min
(
np
.
linalg
.
norm
(
nodes
[
i
]
-
nodes
[
j
])
for
i
in
range
(
nnodes
)
for
j
in
range
(
nnodes
)
if
i
!=
j
)
)
# Return minimum over all element groups in the discretization
return
min
(
min_delta_rs
)
def
symmetric_eigenvalues
(
actx
,
amat
):
"""
*amat* must be complex-valued, or ``actx.np.sqrt`` must automatically
up-cast to complex data.
"""
# https://gist.github.com/inducer/75ede170638c389c387e72e0ef1f0ef4
sqrt
=
actx
.
np
.
sqrt
if
amat
.
shape
==
(
1
,
1
):
(
a
,),
=
amat
return
a
elif
amat
.
shape
==
(
2
,
2
):
(
a
,
b
),
(
_b
,
c
)
=
amat
x0
=
sqrt
(
a
**
2
-
2
*
a
*
c
+
4
*
b
**
2
+
c
**
2
)
/
2
x1
=
a
/
2
+
c
/
2
return
[
-
x0
+
x1
,
x0
+
x1
]
elif
amat
.
shape
==
(
3
,
3
):
# This is likely awful numerically, but *shrug*, we're only using
# it for time step estimation.
(
a
,
b
,
c
),
(
_b
,
d
,
e
),
(
_c
,
_e
,
f
)
=
amat
x0
=
a
*
d
x1
=
f
*
x0
x2
=
b
*
c
*
e
x3
=
e
**
2
x4
=
a
*
x3
x5
=
b
**
2
x6
=
f
*
x5
x7
=
c
**
2
x8
=
d
*
x7
x9
=
-
a
-
d
-
f
x10
=
x9
**
3
x11
=
a
*
f
x12
=
d
*
f
x13
=
(
-
9
*
a
-
9
*
d
-
9
*
f
)
*
(
x0
+
x11
+
x12
-
x3
-
x5
-
x7
)
x14
=
-
3
*
x0
-
3
*
x11
-
3
*
x12
+
3
*
x3
+
3
*
x5
+
3
*
x7
+
x9
**
2
x15_0
=
(
-
4
*
x14
**
3
+
(
-
27
*
x1
+
2
*
x10
-
x13
-
54
*
x2
+
27
*
x4
+
27
*
x6
+
27
*
x8
)
**
2
)
x15_1
=
sqrt
(
x15_0
)
x15_2
=
(
-
27
*
x1
/
2
+
x10
-
x13
/
2
-
27
*
x2
+
27
*
x4
/
2
+
27
*
x6
/
2
+
27
*
x8
/
2
+
x15_1
/
2
)
x15
=
x15_2
**
(
1
/
3
)
x16
=
x15
/
3
x17
=
x14
/
(
3
*
x15
)
x18
=
a
/
3
+
d
/
3
+
f
/
3
x19
=
3
**
(
1
/
2
)
*
1j
/
2
x20
=
x19
-
1
/
2
x21
=
-
x19
-
1
/
2
return
[
-
x16
-
x17
+
x18
,
-
x16
*
x20
-
x17
/
x20
+
x18
,
-
x16
*
x21
-
x17
/
x21
+
x18
]
else
:
raise
NotImplementedError
(
"
Unsupported shape ({amat.shape}) for analytically computing eigenvalues
"
)
@memoize_on_first_arg
def
dt_geometric_factor
(
dcoll
:
DiscretizationCollection
,
dd
=
None
)
->
float
:
"""
:arg dd: a :class:`~grudge.dof_desc.DOFDesc`, or a value convertible to one.
Defaults to the base volume discretization if not provided.
:returns: a :class:`float` denoting the geometric scaling factor.
"""
if
dd
is
None
:
dd
=
DD_VOLUME
actx
=
dcoll
.
_setup_actx
fmd
=
forward_metric_derivative_mat
(
actx
,
dcoll
,
dd
=
dd
)
ata
=
fmd
@
fmd
.
T
complex_dtype
=
dcoll
.
discr_from_dd
(
dd
).
complex_dtype
ata_complex
=
rec_map_array_container
(
lambda
ary
:
ary
.
astype
(
complex_dtype
),
ata
)
sing_values
=
[
actx
.
np
.
sqrt
(
abs
(
v
))
for
v
in
symmetric_eigenvalues
(
actx
,
ata_complex
)]
return
reduce
(
actx
.
np
.
minimum
,
sing_values
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment