-
Alexandru Fikl authoredAlexandru Fikl authored
test_grudge.py 36.87 KiB
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
from meshmode.dof_array import unflatten, flatten, flat_norm
from pytools.obj_array import flat_obj_array, make_obj_array
from grudge import sym, bind, DGDiscretizationWithBoundaries
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl
as pytest_generate_tests)
import logging
logger = logging.getLogger(__name__)
# {{{ inverse metric
@pytest.mark.parametrize("dim", [2, 3])
def test_inverse_metric(ctx_factory, dim):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(6,)*dim, order=4)
def m(x):
result = np.empty_like(x)
result[0] = (
1.5*x[0] + np.cos(x[0])
+ 0.1*np.sin(10*x[1]))
result[1] = (
0.05*np.cos(10*x[0])
+ 1.3*x[1] + np.sin(x[1]))
if len(x) == 3:
result[2] = x[2]
return result
from meshmode.mesh.processing import map_mesh
mesh = map_mesh(mesh, m)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
sym_op = (
sym.forward_metric_derivative_mat(mesh.dim)
.dot(
sym.inverse_metric_derivative_mat(mesh.dim)
)
.reshape(-1))
op = bind(discr, sym_op)
mat = op(actx).reshape(mesh.dim, mesh.dim)
for i in range(mesh.dim):
for j in range(mesh.dim):
tgt = 1 if i == j else 0
err = flat_norm(mat[i, j] - tgt, np.inf)
logger.info("error[%d, %d]: %.5e", i, j, err)
assert err < 1.0e-12, (i, j, err)
# }}}
# {{{ mass operator trig integration
@pytest.mark.parametrize("ambient_dim", [1, 2, 3])
@pytest.mark.parametrize("quad_tag", [sym.QTAG_NONE, "OVSMP"])
def test_mass_mat_trig(ctx_factory, ambient_dim, quad_tag):
"""Check the integral of some trig functions on an interval using the mass
matrix.
"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
nelements = 17
order = 4
a = -4.0 * np.pi
b = +9.0 * np.pi
true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
dd_quad = sym.DOFDesc(sym.DTAG_VOLUME_ALL, quad_tag)
if quad_tag is sym.QTAG_NONE:
quad_tag_to_group_factory = {}
else:
quad_tag_to_group_factory = {
quad_tag: QuadratureSimplexGroupFactory(order=2*order)
}
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(a,)*ambient_dim, b=(b,)*ambient_dim,
n=(nelements,)*ambient_dim, order=1)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
def _get_variables_on(dd):
sym_f = sym.var("f", dd=dd)
sym_x = sym.nodes(ambient_dim, dd=dd)
sym_ones = sym.Ones(dd)
return sym_f, sym_x, sym_ones
sym_f, sym_x, sym_ones = _get_variables_on(sym.DD_VOLUME)
f_volm = actx.to_numpy(flatten(bind(discr, sym.cos(sym_x[0])**2)(actx)))
ones_volm = actx.to_numpy(flatten(bind(discr, sym_ones)(actx)))
sym_f, sym_x, sym_ones = _get_variables_on(dd_quad)
f_quad = bind(discr, sym.cos(sym_x[0])**2)(actx)
ones_quad = bind(discr, sym_ones)(actx)
mass_op = bind(discr, sym.MassOperator(dd_quad, sym.DD_VOLUME)(sym_f))
num_integral_1 = np.dot(ones_volm, actx.to_numpy(flatten(mass_op(f=f_quad))))
err_1 = abs(num_integral_1 - true_integral)
assert err_1 < 1e-9, err_1
num_integral_2 = np.dot(f_volm, actx.to_numpy(flatten(mass_op(f=ones_quad))))
err_2 = abs(num_integral_2 - true_integral)
assert err_2 < 1.0e-9, err_2
if quad_tag is sym.QTAG_NONE:
# NOTE: `integral` always makes a square mass matrix and
# `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
num_integral_3 = bind(discr,
sym.integral(sym_f, dd=dd_quad))(f=f_quad)
err_3 = abs(num_integral_3 - true_integral)
assert err_3 < 5.0e-10, err_3
# }}}
# {{{ mass operator surface area
def _ellipse_surface_area(radius, aspect_ratio):
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
eccentricity = 1.0 - (1/aspect_ratio)**2
if abs(aspect_ratio - 2.0) < 1.0e-14:
# NOTE: hardcoded value so we don't need scipy for the test
ellip_e = 1.2110560275684594
else:
from scipy.special import ellipe
ellip_e = ellipe(eccentricity)
return 4.0 * radius * ellip_e
def _spheroid_surface_area(radius, aspect_ratio):
# https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
a = 1.0
c = aspect_ratio
if a < c:
e = np.sqrt(1.0 - (a/c)**2)
return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
else:
e = np.sqrt(1.0 - (c/a)**2)
return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
@pytest.mark.parametrize("name", [
"2-1-ellipse", "spheroid", "box2d", "box3d"
])
def test_mass_surface_area(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio)
elif name == "box2d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=2)
surface_area = 1.0
elif name == "box3d":
from mesh_data import BoxMeshBuilder
builder = BoxMeshBuilder(ambient_dim=3)
surface_area = 1.0
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# {{{ compute surface area
dd = sym.DD_VOLUME
sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd)))
approx_surface_area = bind(discr, sym_op)(actx)
logger.info("surface: got {:.5e} / expected {:.5e}".format(
approx_surface_area, surface_area))
area_error = abs(approx_surface_area - surface_area) / abs(surface_area)
# }}}
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
eoc.add_data_point(h_max, area_error)
# }}}
logger.info("surface area error\n%s", str(eoc))
assert eoc.max_error() < 1.0e-14 \
or eoc.order_estimate() > builder.order
# }}}
# {{{ surface mass inverse
@pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"])
def test_surface_mass_operator_inverse(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
# {{{ cases
if name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown geometry name: %s" % name)
# }}}
# {{{ convergence
from pytools.convergence import EOCRecorder
eoc = EOCRecorder()
for resolution in builder.resolutions:
mesh = builder.get_mesh(resolution, builder.mesh_order)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# {{{ compute inverse mass
dd = sym.DD_VOLUME
sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0])
sym_op = sym.InverseMassOperator(dd, dd)(
sym.MassOperator(dd, dd)(sym.var("f")))
f = bind(discr, sym_f)(actx)
f_inv = bind(discr, sym_op)(actx, f=f)
inv_error = bind(discr,
sym.norm(2, sym.var("x") - sym.var("y"))
/ sym.norm(2, sym.var("y")))(actx, x=f_inv, y=f)
# }}}
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
eoc.add_data_point(h_max, inv_error)
# }}}
logger.info("inverse mass error\n%s", str(eoc))
# NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the
# safe side, choose a slightly larger tolerance
assert eoc.max_error() < 1.0e-14
# }}}
# {{{ surface face normal orthogonality
def _avg_face_normal(x, side=-1):
x_i = x
x_e = sym.OppositeInteriorFaceSwap()(x_i)
x_avg = (x_i + side * x_e) / 2.0
return x_avg / sym.sqrt(x_avg.dot(x_avg))
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_face_normal_surface(ctx_factory, mesh_name):
"""Check that face normals are orthogonal to the surface normal"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
# {{{ geometry
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
mesh = builder.get_mesh(builder.resolutions[0], builder.mesh_order)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume_discr.ndofs)
logger.info("nelements: %d", volume_discr.mesh.nelements)
# }}}
# {{{ symbolic
dv = sym.DD_VOLUME
df = sym.as_dofdesc(sym.FACE_RESTR_INTERIOR)
ambient_dim = mesh.ambient_dim
dim = mesh.dim
sym_surf_normal = sym.project(dv, df)(
sym.surface_normal(ambient_dim, dim=dim, dd=dv).as_vector()
)
sym_surf_normal = sym_surf_normal / sym.sqrt(sum(sym_surf_normal**2))
sym_surf_normal_avg = _avg_face_normal(sym_surf_normal, side=1.0)
sym_face_normal_i = sym.normal(df, ambient_dim, dim=dim - 1)
sym_face_normal_e = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_i)
sym_face_normal_avg = _avg_face_normal(sym_face_normal_i)
sym_face_normal_op = sym.OppositeInteriorFaceSwap(df)(sym_face_normal_avg)
if mesh.ambient_dim == 3:
# NOTE: there's only one face tangent in 3d
sym_face_tangent = (
sym.pseudoscalar(ambient_dim, dim - 1, dd=df)
/ sym.area_element(ambient_dim, dim - 1, dd=df)).as_vector()
# }}}
# {{{ checks
def _eval_error(x):
return bind(discr, sym.norm(np.inf, sym.var("x", dd=df), dd=df))(actx, x=x)
rtol = 1.0e-14
surf_normal = bind(discr, sym_surf_normal)(actx)
surf_normal_avg = bind(discr, sym_surf_normal_avg)(actx)
face_normal_i = bind(discr, sym_face_normal_i)(actx)
face_normal_e = bind(discr, sym_face_normal_e)(actx)
face_normal_avg = bind(discr, sym_face_normal_avg)(actx)
face_normal_op = bind(discr, sym_face_normal_op)(actx)
# check interpolated surface normal is orthogonal to face normal
error = _eval_error(surf_normal.dot(face_normal_i))
logger.info("error[n_dot_i]: %.5e", error)
assert error < rtol
# check averaged ones are also orthogonal
error = _eval_error(surf_normal_avg.dot(face_normal_avg))
logger.info("error[a_dot_a]: %.5e", error)
assert error < rtol
# check averaged face normal and interpolated face normal
error = _eval_error(surf_normal.dot(face_normal_avg))
logger.info("error[n_dot_a]: %.5e", error)
assert error > rtol
# check angle between two neighboring elements
error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0)
logger.info("error[i_dot_e]: %.5e", error)
assert error > rtol
# check uniqueness of normal on the two sides
face_normal_sum = face_normal_avg + face_normal_op
error = _eval_error(face_normal_sum.dot(face_normal_sum))
logger.info("error[a_plus_o]: %.5e", error)
assert error < rtol
# check orthogonality with face tangent
if ambient_dim == 3:
face_tangent = bind(discr, sym_face_tangent)(actx)
error = _eval_error(face_tangent.dot(face_normal_avg))
logger.info("error[t_dot_avg]: %.5e", error)
assert error < 5 * rtol
# }}}
# }}}
# {{{ diff operator
@pytest.mark.parametrize("dim", [1, 2, 3])
def test_tri_diff_mat(ctx_factory, dim, order=4):
"""Check differentiation matrix along the coordinate axes on a disk
Uses sines as the function to differentiate.
"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
from meshmode.mesh.generation import generate_regular_rect_mesh
from pytools.convergence import EOCRecorder
axis_eoc_recs = [EOCRecorder() for axis in range(dim)]
for n in [4, 8, 16]:
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(n,)*dim, order=4)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
nabla = sym.nabla(dim)
for axis in range(dim):
x = sym.nodes(dim)
f = bind(discr, sym.sin(3*x[axis]))(actx)
df = bind(discr, 3*sym.cos(3*x[axis]))(actx)
sym_op = nabla[axis](sym.var("f"))
bound_op = bind(discr, sym_op)
df_num = bound_op(f=f)
linf_error = flat_norm(df_num-df, np.Inf)
axis_eoc_recs[axis].add_data_point(1/n, linf_error)
for axis, eoc_rec in enumerate(axis_eoc_recs):
logger.info("axis %d\n%s", axis, eoc_rec)
assert eoc_rec.order_estimate() > order
# }}}
# {{{ divergence theorem
def test_2d_gauss_theorem(ctx_factory):
"""Verify Gauss's theorem explicitly on a mesh"""
pytest.importorskip("meshpy")
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=2)
def f(x):
return flat_obj_array(
sym.sin(3*x[0])+sym.cos(3*x[1]),
sym.sin(2*x[0])+sym.cos(x[1]))
gauss_err = bind(discr,
sym.integral((
sym.nabla(2) * f(sym.nodes(2))
).sum())
- # noqa: W504
sym.integral(
sym.project("vol", sym.BTAG_ALL)(f(sym.nodes(2)))
.dot(sym.normal(sym.BTAG_ALL, 2)),
dd=sym.BTAG_ALL)
)(actx)
assert abs(gauss_err) < 1e-13
@pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"])
def test_surface_divergence_theorem(ctx_factory, mesh_name, visualize=False):
r"""Check the surface divergence theorem.
.. math::
\int_Sigma \phi \nabla_i f_i =
\int_\Sigma \nabla_i \phi f_i +
\int_\Sigma \kappa \phi f_i n_i +
\int_{\partial \Sigma} \phi f_i m_i
where :math:`n_i` is the surface normal and :class:`m_i` is the
face normal (which should be orthogonal to both the surface normal
and the face tangent).
"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
# {{{ cases
if mesh_name == "2-1-ellipse":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
elif mesh_name == "spheroid":
from mesh_data import SpheroidMeshBuilder
builder = SpheroidMeshBuilder()
elif mesh_name == "circle":
from mesh_data import EllipseMeshBuilder
builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
elif mesh_name == "starfish":
from mesh_data import StarfishMeshBuilder
builder = StarfishMeshBuilder()
elif mesh_name == "sphere":
from mesh_data import SphereMeshBuilder
builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
else:
raise ValueError("unknown mesh name: %s" % mesh_name)
# }}}
# {{{ convergene
def f(x):
return flat_obj_array(
sym.sin(3*x[1]) + sym.cos(3*x[0]) + 1.0,
sym.sin(2*x[0]) + sym.cos(x[1]),
3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
)[:ambient_dim]
from pytools.convergence import EOCRecorder
eoc_global = EOCRecorder()
eoc_local = EOCRecorder()
theta = np.pi / 3.33
ambient_dim = builder.ambient_dim
if ambient_dim == 2:
mesh_rotation = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)],
])
else:
mesh_rotation = np.array([
[1.0, 0.0, 0.0],
[0.0, np.cos(theta), -np.sin(theta)],
[0.0, np.sin(theta), np.cos(theta)],
])
mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]
for i, resolution in enumerate(builder.resolutions):
from meshmode.mesh.processing import affine_map
mesh = builder.get_mesh(resolution, builder.mesh_order)
mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)
from meshmode.discretization.poly_element import \
QuadratureSimplexGroupFactory
discr = DGDiscretizationWithBoundaries(actx, mesh, order=builder.order,
quad_tag_to_group_factory={
"product": QuadratureSimplexGroupFactory(2 * builder.order)
})
volume = discr.discr_from_dd(sym.DD_VOLUME)
logger.info("ndofs: %d", volume.ndofs)
logger.info("nelements: %d", volume.mesh.nelements)
dd = sym.DD_VOLUME
dq = dd.with_qtag("product")
df = sym.as_dofdesc(sym.FACE_RESTR_ALL)
ambient_dim = discr.ambient_dim
dim = discr.dim
# variables
sym_f = f(sym.nodes(ambient_dim, dd=dd))
sym_f_quad = f(sym.nodes(ambient_dim, dd=dq))
sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq)
sym_normal = sym.surface_normal(ambient_dim, dim=dim, dd=dq).as_vector()
sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1)
sym_face_f = sym.project(dd, df)(sym_f)
# operators
sym_stiff = sum(
sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f)
)
sym_stiff_t = sum(
sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f)
)
sym_k = sym.MassOperator(dq, dd)(sym_kappa * sym_f_quad.dot(sym_normal))
sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal))
# sum everything up
sym_op_global = sym.NodalSum(dd)(
sym_stiff - (sym_stiff_t + sym_k))
sym_op_local = sym.ElementwiseSumOperator(dd)(
sym_stiff - (sym_stiff_t + sym_k + sym_flux))
# evaluate
op_global = bind(discr, sym_op_global)(actx)
op_local = bind(discr, sym_op_local)(actx)
err_global = abs(op_global)
err_local = bind(discr, sym.norm(np.inf, sym.var("x")))(actx, x=op_local)
logger.info("errors: global %.5e local %.5e", err_global, err_local)
# compute max element size
h_max = bind(discr, sym.h_max_from_volume(
discr.ambient_dim, dim=discr.dim, dd=dd))(actx)
eoc_global.add_data_point(h_max, err_global)
eoc_local.add_data_point(h_max, err_local)
if visualize:
from grudge.shortcuts import make_visualizer
vis = make_visualizer(discr, vis_order=builder.order)
filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
vis.write_vtk_file(filename, [
("r", actx.np.log10(op_local))
], overwrite=True)
# }}}
order = min(builder.order, builder.mesh_order) - 0.5
logger.info("\n%s", str(eoc_global))
logger.info("\n%s", str(eoc_local))
assert eoc_global.max_error() < 1.0e-12 \
or eoc_global.order_estimate() > order - 0.5
assert eoc_local.max_error() < 1.0e-12 \
or eoc_local.order_estimate() > order - 0.5
# }}}
# {{{ models: advection
@pytest.mark.parametrize(("mesh_name", "mesh_pars"), [
("segment", [8, 16, 32]),
("disk", [0.1, 0.05]),
("rect2", [4, 8]),
("rect3", [4, 6]),
])
@pytest.mark.parametrize("op_type", ["strong", "weak"])
@pytest.mark.parametrize("flux_type", ["central"])
@pytest.mark.parametrize("order", [3, 4, 5])
# test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)'
def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type,
order, visualize=False):
"""Test whether 2D advection actually converges"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
for mesh_par in mesh_pars:
if mesh_name == "segment":
from meshmode.mesh.generation import generate_box_mesh
mesh = generate_box_mesh(
[np.linspace(-1.0, 1.0, mesh_par)],
order=order)
dim = 1
dt_factor = 1.0
elif mesh_name == "disk":
pytest.importorskip("meshpy")
from meshpy.geometry import make_circle, GeometryBuilder
from meshpy.triangle import MeshInfo, build
geob = GeometryBuilder()
geob.add_geometry(*make_circle(1))
mesh_info = MeshInfo()
geob.set(mesh_info)
mesh_info = build(mesh_info, max_volume=mesh_par)
from meshmode.mesh.io import from_meshpy
mesh = from_meshpy(mesh_info, order=1)
dim = 2
dt_factor = 4
elif mesh_name.startswith("rect"):
dim = int(mesh_name[4:])
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(mesh_par,)*dim, order=4)
if dim == 2:
dt_factor = 4
elif dim == 3:
dt_factor = 2
else:
raise ValueError("dt_factor not known for %dd" % dim)
else:
raise ValueError("invalid mesh name: " + mesh_name)
v = np.array([0.27, 0.31, 0.1])[:dim]
norm_v = la.norm(v)
def f(x):
return sym.sin(10*x)
def u_analytic(x):
return f(
-v.dot(x)/norm_v
+ sym.var("t", sym.DD_SCALAR)*norm_v)
from grudge.models.advection import (
StrongAdvectionOperator, WeakAdvectionOperator)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
op_class = {
"strong": StrongAdvectionOperator,
"weak": WeakAdvectionOperator,
}[op_type]
op = op_class(v,
inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
flux_type=flux_type)
bound_op = bind(discr, op.sym_operator())
u = bind(discr, u_analytic(sym.nodes(dim)))(actx, t=0)
def rhs(t, u):
return bound_op(t=t, u=u)
if dim == 3:
final_time = 0.1
else:
final_time = 0.2
h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(actx)
dt = dt_factor * h_max/order**2
nsteps = (final_time // dt) + 1
dt = final_time/nsteps + 1e-15
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("u", dt, u, rhs)
last_u = None
from grudge.shortcuts import make_visualizer
vis = make_visualizer(discr, vis_order=order)
step = 0
for event in dt_stepper.run(t_end=final_time):
if isinstance(event, dt_stepper.StateComputed):
step += 1
logger.debug("[%04d] t = %.5f", step, event.t)
last_t = event.t
last_u = event.state_component
if visualize:
vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step),
[("u", event.state_component)])
error_l2 = bind(discr,
sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))(
t=last_t, u=last_u)
logger.info("h_max %.5e error %.5e", h_max, error_l2)
eoc_rec.add_data_point(h_max, error_l2)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
# }}}
# {{{ models: maxwell
@pytest.mark.parametrize("order", [3, 4, 5])
def test_convergence_maxwell(ctx_factory, order):
"""Test whether 3D Maxwell's actually converges"""
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
dims = 3
ns = [4, 6, 8]
for n in ns:
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(0.0,)*dims,
b=(1.0,)*dims,
n=(n,)*dims)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order)
epsilon = 1
mu = 1
from grudge.models.em import get_rectangular_cavity_mode
sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
analytic_sol = bind(discr, sym_mode)
fields = analytic_sol(actx, t=0, epsilon=epsilon, mu=mu)
from grudge.models.em import MaxwellOperator
op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims)
op.check_bc_coverage(mesh)
bound_op = bind(discr, op.sym_operator())
def rhs(t, w):
return bound_op(t=t, w=w)
dt = 0.002
final_t = dt * 5
nsteps = int(final_t/dt)
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("w", dt, fields, rhs)
logger.info("dt %.5e nsteps %5d", dt, nsteps)
norm = bind(discr, sym.norm(2, sym.var("u")))
step = 0
for event in dt_stepper.run(t_end=final_t):
if isinstance(event, dt_stepper.StateComputed):
assert event.component_id == "w"
esc = event.state_component
step += 1
logger.debug("[%04d] t = %.5e", step, event.t)
sol = analytic_sol(actx, mu=mu, epsilon=epsilon, t=step * dt)
vals = [norm(u=(esc[i] - sol[i])) / norm(u=sol[i]) for i in range(5)] # noqa E501
total_error = sum(vals)
eoc_rec.add_data_point(1.0/n, total_error)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
assert eoc_rec.order_estimate() > order
# }}}
# {{{ models: variable coefficient advection oversampling
@pytest.mark.parametrize("order", [2, 3, 4])
def test_improvement_quadrature(ctx_factory, order):
"""Test whether quadrature improves things and converges"""
from meshmode.mesh.generation import generate_regular_rect_mesh
from grudge.models.advection import VariableCoefficientAdvectionOperator
from pytools.convergence import EOCRecorder
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
dims = 2
sym_nds = sym.nodes(dims)
advec_v = flat_obj_array(-1*sym_nds[1], sym_nds[0])
flux = "upwind"
op = VariableCoefficientAdvectionOperator(advec_v, 0, flux_type=flux)
def gaussian_mode():
source_width = 0.1
sym_x = sym.nodes(2)
return sym.exp(-np.dot(sym_x, sym_x) / source_width**2)
def conv_test(descr, use_quad):
logger.info("-" * 75)
logger.info(descr)
logger.info("-" * 75)
eoc_rec = EOCRecorder()
ns = [20, 25]
for n in ns:
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dims,
b=(0.5,)*dims,
n=(n,)*dims,
order=order)
if use_quad:
quad_tag_to_group_factory = {
"product": QuadratureSimplexGroupFactory(order=4*order)
}
else:
quad_tag_to_group_factory = {"product": None}
discr = DGDiscretizationWithBoundaries(actx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
bound_op = bind(discr, op.sym_operator())
fields = bind(discr, gaussian_mode())(actx, t=0)
norm = bind(discr, sym.norm(2, sym.var("u")))
esc = bound_op(u=fields)
total_error = norm(u=esc)
eoc_rec.add_data_point(1.0/n, total_error)
logger.info("\n%s", eoc_rec.pretty_print(
abscissa_label="h",
error_label="L2 Error"))
return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history])
eoc, errs = conv_test("no quadrature", False)
q_eoc, q_errs = conv_test("with quadrature", True)
assert q_eoc > eoc
assert (q_errs < errs).all()
assert q_eoc > order
# }}}
# {{{ operator collector determinism
def test_op_collector_order_determinism():
class TestOperator(sym.Operator):
def __init__(self):
sym.Operator.__init__(self, sym.DD_VOLUME, sym.DD_VOLUME)
mapper_method = "map_test_operator"
from grudge.symbolic.mappers import BoundOperatorCollector
class TestBoundOperatorCollector(BoundOperatorCollector):
def map_test_operator(self, expr):
return self.map_operator(expr)
v0 = sym.var("v0")
ob0 = sym.OperatorBinding(TestOperator(), v0)
v1 = sym.var("v1")
ob1 = sym.OperatorBinding(TestOperator(), v1)
# The output order isn't significant, but it should always be the same.
assert list(TestBoundOperatorCollector(TestOperator)(ob0 + ob1)) == [ob0, ob1]
# }}}
# {{{ bessel
def test_bessel(ctx_factory):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
dims = 2
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(0.1,)*dims,
b=(1.0,)*dims,
n=(8,)*dims)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=3)
nodes = sym.nodes(dims)
r = sym.cse(sym.sqrt(nodes[0]**2 + nodes[1]**2))
# https://dlmf.nist.gov/10.6.1
n = 3
bessel_zero = (
sym.bessel_j(n+1, r)
+ sym.bessel_j(n-1, r)
- 2*n/r * sym.bessel_j(n, r))
z = bind(discr, sym.norm(2, bessel_zero))(actx)
assert z < 1e-15
# }}}
# {{{ function symbol
def test_external_call(ctx_factory):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
def double(queue, x):
return 2 * x
from meshmode.mesh.generation import generate_regular_rect_mesh
dims = 2
mesh = generate_regular_rect_mesh(a=(0,) * dims, b=(1,) * dims, n=(4,) * dims)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=1)
ones = sym.Ones(sym.DD_VOLUME)
op = (
ones * 3
+ sym.FunctionSymbol("double")(ones))
from grudge.function_registry import (
base_function_registry, register_external_function)
freg = register_external_function(
base_function_registry,
"double",
implementation=double,
dd=sym.DD_VOLUME)
bound_op = bind(discr, op, function_registry=freg)
result = bound_op(actx, double=double)
assert actx.to_numpy(flatten(result) == 5).all()
@pytest.mark.parametrize("array_type", ["scalar", "vector"])
def test_function_symbol_array(ctx_factory, array_type):
"""Test if `FunctionSymbol` distributed properly over object arrays."""
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
actx = PyOpenCLArrayContext(queue)
from meshmode.mesh.generation import generate_regular_rect_mesh
dim = 2
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dim, b=(0.5,)*dim,
n=(8,)*dim, order=4)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
volume_discr = discr.discr_from_dd(sym.DD_VOLUME)
ndofs = sum(grp.ndofs for grp in volume_discr.groups)
import pyopencl.clrandom # noqa: F401
if array_type == "scalar":
sym_x = sym.var("x")
x = unflatten(actx, volume_discr,
cl.clrandom.rand(queue, ndofs, dtype=np.float))
elif array_type == "vector":
sym_x = sym.make_sym_array("x", dim)
x = make_obj_array([
unflatten(actx, volume_discr,
cl.clrandom.rand(queue, ndofs, dtype=np.float))
for _ in range(dim)
])
else:
raise ValueError("unknown array type")
norm = bind(discr, sym.norm(2, sym_x))(x=x)
assert isinstance(norm, float)
# }}}
@pytest.mark.parametrize("p", [2, np.inf])
def test_norm_obj_array(ctx_factory, p):
"""Test :func:`grudge.symbolic.operators.norm` for object arrays."""
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
actx = PyOpenCLArrayContext(queue)
from meshmode.mesh.generation import generate_regular_rect_mesh
dim = 2
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dim, b=(0.5,)*dim,
n=(8,)*dim, order=1)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
w = make_obj_array([1.0, 2.0, 3.0])[:dim]
# {{ scalar
sym_w = sym.var("w")
norm = bind(discr, sym.norm(p, sym_w))(actx, w=w[0])
norm_exact = w[0]
logger.info("norm: %.5e %.5e", norm, norm_exact)
assert abs(norm - norm_exact) < 1.0e-14
# }}}
# {{{ vector
sym_w = sym.make_sym_array("w", dim)
norm = bind(discr, sym.norm(p, sym_w))(actx, w=w)
norm_exact = np.sqrt(np.sum(w**2)) if p == 2 else np.max(w)
logger.info("norm: %.5e %.5e", norm, norm_exact)
assert abs(norm - norm_exact) < 1.0e-14
# }}}
def test_map_if(ctx_factory):
"""Test :meth:`grudge.symbolic.execution.ExecutionMapper.map_if` handling
of scalar conditions.
"""
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
actx = PyOpenCLArrayContext(queue)
from meshmode.mesh.generation import generate_regular_rect_mesh
dim = 2
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dim, b=(0.5,)*dim,
n=(8,)*dim, order=4)
discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
sym_if = sym.If(sym.Comparison(2.0, "<", 1.0e-14), 1.0, 2.0)
bind(discr, sym_if)(actx)
# You can test individual routines by typing
# $ python test_grudge.py 'test_routine()'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
pytest.main([__file__])
# vim: fdm=marker