-
Andreas Klöckner authoredAndreas Klöckner authored
shearflow.py 7.41 KiB
# grudge - the Hybrid'n'Easy DG Environment
# Copyright (C) 2008 Andreas Kloeckner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import numpy
import numpy.linalg as la
class SteadyShearFlow:
def __init__(self):
self.gamma = 1.5
self.mu = 0.01
self.prandtl = 0.72
self.spec_gas_const = 287.1
def __call__(self, t, x_vec):
# JSH/TW Nodal DG Methods, p.326
rho = numpy.ones_like(x_vec[0])
rho_u = x_vec[1] * x_vec[1]
rho_v = numpy.zeros_like(x_vec[0])
e = (2 * self.mu * x_vec[0] + 10) / (self.gamma - 1) + x_vec[1]**4 / 2
from grudge.tools import join_fields
return join_fields(rho, e, rho_u, rho_v)
def properties(self):
return(self.gamma, self.mu, self.prandtl, self.spec_gas_const)
def volume_interpolant(self, t, discr):
return discr.convert_volume(
self(t, discr.nodes.T
.astype(discr.default_scalar_type)),
kind=discr.compute_kind)
def boundary_interpolant(self, t, discr, tag):
result = discr.convert_boundary(
self(t, discr.get_boundary(tag).nodes.T
.astype(discr.default_scalar_type)),
tag=tag, kind=discr.compute_kind)
return result
def main():
from grudge.backends import guess_run_context
rcon = guess_run_context(
#["cuda"]
)
from grudge.tools import EOCRecorder, to_obj_array
eoc_rec = EOCRecorder()
def boundary_tagger(vertices, el, face_nr, all_v):
return ["inflow"]
if rcon.is_head_rank:
from grudge.mesh import make_rect_mesh, \
make_centered_regular_rect_mesh
#mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
refine = 1
mesh = make_centered_regular_rect_mesh((0,0), (10,1), n=(20,4),
#periodicity=(True, False),
post_refine_factor=refine,
boundary_tagger=boundary_tagger)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
for order in [3]:
discr = rcon.make_discretization(mesh_data, order=order,
default_scalar_type=numpy.float64)
from grudge.visualization import SiloVisualizer, VtkVisualizer
#vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
vis = SiloVisualizer(discr, rcon)
shearflow = SteadyShearFlow()
fields = shearflow.volume_interpolant(0, discr)
gamma, mu, prandtl, spec_gas_const = shearflow.properties()
from grudge.models.gas_dynamics import GasDynamicsOperator
op = GasDynamicsOperator(dimensions=2, gamma=gamma, mu=mu,
prandtl=prandtl, spec_gas_const=spec_gas_const,
bc_inflow=shearflow, bc_outflow=shearflow, bc_noslip=shearflow,
inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")
navierstokes_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = navierstokes_ex(t, q)
max_eigval[0] = speed
return ode_rhs
# needed to get first estimate of maximum eigenvalue
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements=", len(mesh.elements))
from grudge.timestep import RK4TimeStepper
stepper = RK4TimeStepper()
# diagnostics setup ---------------------------------------------------
from pytools.log import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
"w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# timestep loop -------------------------------------------------------
try:
from grudge.timestep import times_and_steps
step_it = times_and_steps(
final_time=0.3,
#max_steps=500,
logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
for step, t, dt in step_it:
if step % 10 == 0:
#if False:
visf = vis.make_file("shearflow-%d-%04d" % (order, step))
#true_fields = shearflow.volume_interpolant(t, discr)
from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
#("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
#("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
#("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
#("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
],
expressions=[
#("diff_rho", "rho-true_rho"),
#("diff_e", "e-true_e"),
#("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
("p", "0.4*(e- 0.5*(rho_u*u))"),
],
time=t, step=step
)
visf.close()
fields = stepper(fields, t, dt, rhs)
true_fields = shearflow.volume_interpolant(t, discr)
l2_error = discr.norm(op.u(fields)-op.u(true_fields))
eoc_rec.add_data_point(order, l2_error)
print()
print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
logmgr.set_constant("l2_error", l2_error)
finally:
vis.close()
logmgr.save()
discr.close()
if __name__ == "__main__":
main()