Newer
Older
__copyright__ = """
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from dataclasses import dataclass
from arraycontext import (
dataclass_array_container,
pytest_generate_tests_for_array_contexts,
with_container_arithmetic,
from meshmode.dof_array import DOFArray
from pytools.obj_array import make_obj_array
from grudge import op
from grudge.array_context import PytestPyOpenCLArrayContextFactory
from grudge.discretization import make_discretization_collection
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts(
[PytestPyOpenCLArrayContextFactory])
@pytest.mark.parametrize(("mesh_size", "with_initial"), [
(4, False),
(4, True),
(0, False),
(0, True)
])
def test_nodal_reductions(actx_factory, mesh_size, with_initial):
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return -actx.np.sin(10*x[0])
def g(x):
return actx.np.cos(2*x[0])
def h(x):
return -actx.np.tan(5*x[0])
fields = make_obj_array([f(x), g(x), h(x)])
f_ref = actx.to_numpy(flatten(fields[0], actx))
g_ref = actx.to_numpy(flatten(fields[1], actx))
h_ref = actx.to_numpy(flatten(fields[2], actx))
concat_fields = np.concatenate([f_ref, g_ref, h_ref])
for grudge_op, np_op in [(op.nodal_max, np.max),
(op.nodal_min, np.min),
(op.nodal_sum, np.sum)]:
extra_kwargs = {}
if with_initial:
if grudge_op is op.nodal_max:
extra_kwargs["initial"] = -100.
elif grudge_op is op.nodal_min:
extra_kwargs["initial"] = 100.
# nodal_min/nodal_max have default initial values, so they behave
# differently from numpy in the empty case
extra_np_only_kwargs = {}
if mesh_size == 0 and not with_initial:
if grudge_op is op.nodal_max:
extra_np_only_kwargs["initial"] = -np.inf
elif grudge_op is op.nodal_min:
extra_np_only_kwargs["initial"] = np.inf
# Componentwise reduction checks
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields[0], **extra_kwargs)),
np_op(f_ref, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields[1], **extra_kwargs)),
np_op(g_ref, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields[2], **extra_kwargs)),
np_op(h_ref, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
# Test nodal reductions work on object arrays
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields, **extra_kwargs)),
np_op(concat_fields, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
def test_elementwise_reductions(actx_factory):
actx = actx_factory()
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return actx.np.sin(x[0])
field = f(x)
mins = []
maxs = []
sums = []
for grp_f in field:
min_res = np.empty(grp_f.shape)
max_res = np.empty(grp_f.shape)
sum_res = np.empty(grp_f.shape)
for eidx in range(mesh.nelements):
element_data = actx.to_numpy(grp_f[eidx])
min_res[eidx, :] = np.min(element_data)
max_res[eidx, :] = np.max(element_data)
sum_res[eidx, :] = np.sum(element_data)
mins.append(actx.from_numpy(min_res))
maxs.append(actx.from_numpy(max_res))
sums.append(actx.from_numpy(sum_res))
ref_mins = DOFArray(actx, data=tuple(mins))
ref_maxs = DOFArray(actx, data=tuple(maxs))
ref_sums = DOFArray(actx, data=tuple(sums))
elem_mins = op.elementwise_min(dcoll, field)
elem_maxs = op.elementwise_max(dcoll, field)
elem_sums = op.elementwise_sum(dcoll, field)
assert actx.to_numpy(op.norm(dcoll, elem_mins - ref_mins, np.inf)) < 1.e-15
assert actx.to_numpy(op.norm(dcoll, elem_maxs - ref_maxs, np.inf)) < 1.e-15
assert actx.to_numpy(op.norm(dcoll, elem_sums - ref_sums, np.inf)) < 1.e-15
# {{{ Array container tests
@with_container_arithmetic(bcasts_across_obj_array=False,
eq_comparison=False,
rel_comparison=False,
_cls_has_array_context_attr=True,
)
@dataclass_array_container
@dataclass(frozen=True)
class MyContainer:
name: str
mass: DOFArray
momentum: np.ndarray
enthalpy: DOFArray
# NOTE: disable numpy doing any array math
__array_ufunc__ = None
@property
def array_context(self):
return self.mass.array_context
def test_nodal_reductions_with_container(actx_factory):
actx = actx_factory()
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return -actx.np.sin(10*x[0]) * actx.np.cos(2*x[1])
def g(x):
return actx.np.cos(2*x[0]) * actx.np.sin(10*x[1])
def h(x):
return -actx.np.tan(5*x[0]) * actx.np.tan(0.5*x[1])
mass = f(x) + g(x)
momentum = make_obj_array([f(x)/g(x), h(x)])
enthalpy = h(x) - g(x)
ary_container = MyContainer(name="container",
mass=mass,
momentum=momentum,
enthalpy=enthalpy)
mass_ref = actx.to_numpy(flatten(mass, actx))
momentum_ref = np.concatenate([
actx.to_numpy(mom_i)
for mom_i in flatten(momentum, actx, leaf_class=DOFArray)])
enthalpy_ref = actx.to_numpy(flatten(enthalpy, actx))
concat_fields = np.concatenate([mass_ref, momentum_ref, enthalpy_ref])
for grudge_op, np_op in [(op.nodal_sum, np.sum),
(op.nodal_max, np.max),
(op.nodal_min, np.min)]:
assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", ary_container)),
np_op(concat_fields), rtol=1e-13)
# Check norm reduction
assert np.isclose(actx.to_numpy(op.norm(dcoll, ary_container, np.inf)),
np.linalg.norm(concat_fields, ord=np.inf),
rtol=1e-13)
def test_elementwise_reductions_with_container(actx_factory):
actx = actx_factory()
nelements = 4
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def f(x):
return actx.np.sin(x[0]) * actx.np.sin(x[1])
def g(x):
return actx.np.cos(x[0]) * actx.np.cos(x[1])
def h(x):
return actx.np.cos(x[0]) * actx.np.sin(x[1])
mass = 2*f(x) + 0.5*g(x)
momentum = make_obj_array([f(x)/g(x), h(x)])
enthalpy = 3*h(x) - g(x)
ary_container = MyContainer(name="container",
mass=mass,
momentum=momentum,
enthalpy=enthalpy)
def _get_ref_data(field):
mins = []
maxs = []
sums = []
for grp_f in field:
min_res = np.empty(grp_f.shape)
max_res = np.empty(grp_f.shape)
sum_res = np.empty(grp_f.shape)
for eidx in range(mesh.nelements):
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
element_data = actx.to_numpy(grp_f[eidx])
min_res[eidx, :] = np.min(element_data)
max_res[eidx, :] = np.max(element_data)
sum_res[eidx, :] = np.sum(element_data)
mins.append(actx.from_numpy(min_res))
maxs.append(actx.from_numpy(max_res))
sums.append(actx.from_numpy(sum_res))
min_field = DOFArray(actx, data=tuple(mins))
max_field = DOFArray(actx, data=tuple(maxs))
sums_field = DOFArray(actx, data=tuple(sums))
return min_field, max_field, sums_field
min_mass, max_mass, sums_mass = _get_ref_data(mass)
min_enthalpy, max_enthalpy, sums_enthalpy = _get_ref_data(enthalpy)
min_mom_x, max_mom_x, sums_mom_x = _get_ref_data(momentum[0])
min_mom_y, max_mom_y, sums_mom_y = _get_ref_data(momentum[1])
min_momentum = make_obj_array([min_mom_x, min_mom_y])
max_momentum = make_obj_array([max_mom_x, max_mom_y])
sums_momentum = make_obj_array([sums_mom_x, sums_mom_y])
reference_min = MyContainer(
name="Reference min",
mass=min_mass,
momentum=min_momentum,
enthalpy=min_enthalpy
)
reference_max = MyContainer(
name="Reference max",
mass=max_mass,
momentum=max_momentum,
enthalpy=max_enthalpy
)
reference_sum = MyContainer(
name="Reference sums",
mass=sums_mass,
momentum=sums_momentum,
enthalpy=sums_enthalpy
)
elem_mins = op.elementwise_min(dcoll, ary_container)
elem_maxs = op.elementwise_max(dcoll, ary_container)
elem_sums = op.elementwise_sum(dcoll, ary_container)
assert actx.to_numpy(op.norm(dcoll, elem_mins - reference_min, np.inf)) < 1.e-14
assert actx.to_numpy(op.norm(dcoll, elem_maxs - reference_max, np.inf)) < 1.e-14
assert actx.to_numpy(op.norm(dcoll, elem_sums - reference_sum, np.inf)) < 1.e-14
# }}}
# You can test individual routines by typing
# $ python test_grudge.py 'test_routine()'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
pytest.main([__file__])