Newer
Older
__copyright__ = """
Copyright (C) 2015 Andreas Kloeckner
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from pytools.obj_array import flat_obj_array
import grudge.op as op
from grudge import make_discretization_collection
from grudge.array_context import MPIPyOpenCLArrayContext
from grudge.shortcuts import set_up_rk4
def main(dim=2, order=4, visualize=True):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
allocator = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
actx = MPIPyOpenCLArrayContext(comm, queue, allocator=allocator)
from meshmode.distributed import get_partition_by_pymetis, membership_list_to_map
from meshmode.mesh.processing import partition_mesh
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5,)*dim,
b=(0.5,)*dim,
nelements_per_axis=(16,)*dim)
part_id_to_part = partition_mesh(mesh,
membership_list_to_map(
get_partition_by_pymetis(mesh, num_parts)))
parts = [part_id_to_part[i] for i in range(num_parts)]
local_mesh = comm.scatter(parts)
local_mesh = comm.scatter(None)
dcoll = make_discretization_collection(actx, local_mesh, order=order)
def source_f(actx, dcoll, t=0):
source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
source_width = 0.05
source_omega = 3
nodes = actx.thaw(dcoll.nodes())
source_center_dist = flat_obj_array(
[nodes[i] - source_center[i] for i in range(dcoll.dim)]
)
return (
np.sin(source_omega*t)
* actx.np.exp(
-np.dot(source_center_dist, source_center_dist)
/ source_width**2
)
)
from meshmode.mesh import BTAG_ALL, BTAG_NONE
from grudge.models.wave import WeakWaveOperator
wave_op = WeakWaveOperator(
dcoll,
0.1,
source_f=source_f,
dirichlet_tag=BTAG_NONE,
neumann_tag=BTAG_NONE,
radiation_tag=BTAG_ALL,
flux_type="upwind"
)
fields = flat_obj_array(
dcoll.zeros(actx),
[dcoll.zeros(actx) for i in range(dcoll.dim)]
)
dt = actx.to_numpy(
2/3 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields))
wave_op.check_bc_coverage(local_mesh)
dt_stepper = set_up_rk4("w", dt, fields, rhs)
final_t = 10
from grudge.shortcuts import make_visualizer
def norm(u):
return op.norm(dcoll, u, 2)
from time import time
t_last_step = time()
u = fields[0]
v = fields[1:]
vis.write_parallel_vtk_file(
comm,
f"fld-wave-min-mpi-{{rank:03d}}-{step:04d}.vtu",
[
("u", u),
("v", v),
]
)
for event in dt_stepper.run(t_end=final_t):
if isinstance(event, dt_stepper.StateComputed):
assert event.component_id == "w"
step += 1
l2norm = norm(u=event.state_component[0])
logger.info("step: %d t: %.8e L2: %.8e",
step, time() - t_last_step, l2norm)
comm,
f"fld-wave-min-mpi-{{rank:03d}}-{step:04d}.vtu",
[
("u", event.state_component[0]),
("v", event.state_component[1:]),
# NOTE: These are here to ensure the solution is bounded for the
# time interval specified
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dim", default=2, type=int)
parser.add_argument("--order", default=4, type=int)
parser.add_argument("--visualize", action="store_true")
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
dim=args.dim,
order=args.order,
visualize=args.visualize)