Newer
Older
__copyright__ = """
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import pyopencl as cl
import pyopencl.tools as cl_tools
from arraycontext import ArrayContext
from meshmode.mesh import BTAG_ALL
from pytools.obj_array import make_obj_array
import grudge.op as op
from grudge.array_context import PyOpenCLArrayContext, PytatoPyOpenCLArrayContext
from grudge.models.euler import ConservedEulerField, EulerOperator, InviscidWallBC
from grudge.shortcuts import rk4_step
logger = logging.getLogger(__name__)
def gaussian_profile(
actx: ArrayContext,
x_vec, t=0, rho0=1.0, rhoamp=1.0, p0=1.0, gamma=1.4,
center=None, velocity=None):
dim = len(x_vec)
if center is None:
center = np.zeros(shape=(dim,))
if velocity is None:
velocity = np.zeros(shape=(dim,))
lump_loc = center + t * velocity
# coordinates relative to lump center
rel_center = make_obj_array(
[x_vec[i] - lump_loc[i] for i in range(dim)]
)
r = actx.np.sqrt(np.dot(rel_center, rel_center))
expterm = rhoamp * actx.np.exp(1 - r ** 2)
mass = expterm + rho0
mom = velocity.astype(object) * mass
energy = (p0 / (gamma - 1.0)) + np.dot(mom, mom) / (2.0 * mass)
return ConservedEulerField(mass=mass, energy=energy, momentum=mom)
def make_pulse(amplitude, r0, w, r):
dim = len(r)
r_0 = np.zeros(dim)
r_0 = r_0 + r0
rel_center = make_obj_array(
[r[i] - r_0[i] for i in range(dim)]
)
actx = r[0].array_context
rms2 = w * w
r2 = np.dot(rel_center, rel_center) / rms2
return amplitude * actx.np.exp(-.5 * r2)
def acoustic_pulse_condition(actx: ArrayContext, x_vec, t=0):
dim = len(x_vec)
vel = np.zeros(shape=(dim,))
orig = np.zeros(shape=(dim,))
uniform_gaussian = gaussian_profile(
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
x_vec, t=t, center=orig, velocity=vel, rhoamp=0.0)
amplitude = 1.0
width = 0.1
pulse = make_pulse(amplitude, orig, width, x_vec)
return ConservedEulerField(
mass=uniform_gaussian.mass,
energy=uniform_gaussian.energy + pulse,
momentum=uniform_gaussian.momentum
)
def run_acoustic_pulse(actx,
order=3,
final_time=1,
resolution=16,
overintegration=False,
visualize=False):
# eos-related parameters
gamma = 1.4
# {{{ discretization
from meshmode.mesh.generation import generate_regular_rect_mesh
dim = 2
box_ll = -0.5
box_ur = 0.5
mesh = generate_regular_rect_mesh(
a=(box_ll,)*dim,
b=(box_ur,)*dim,
nelements_per_axis=(resolution,)*dim)
from meshmode.discretization.poly_element import (
QuadratureSimplexGroupFactory,
default_simplex_group_factory,
)
from grudge.discretization import make_discretization_collection
from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
exp_name = f"fld-acoustic-pulse-N{order}-K{resolution}"
if overintegration:
exp_name += "-overintegrated"
quad_tag = DISCR_TAG_QUAD
else:
quad_tag = None
dcoll = make_discretization_collection(
actx, mesh,
discr_tag_to_group_factory={
DISCR_TAG_BASE: default_simplex_group_factory(
base_dim=mesh.dim, order=order),
DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order)
}
)
# }}}
# {{{ Euler operator
euler_operator = EulerOperator(
dcoll,
bdry_conditions={BTAG_ALL: InviscidWallBC()},
flux_type="lf",
gamma=gamma,
quadrature_tag=quad_tag
)
def rhs(t, q):
return euler_operator.operator(actx, t, q)
compiled_rhs = actx.compile(rhs)
from grudge.dt_utils import h_min_from_volume
cfl = 0.125
cn = 0.5*(order + 1)**2
dt = cfl * actx.to_numpy(h_min_from_volume(dcoll)) / cn
fields = acoustic_pulse_condition(actx, actx.thaw(dcoll.nodes()))
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
logger.info("Timestep size: %g", dt)
# }}}
from grudge.shortcuts import make_visualizer
vis = make_visualizer(dcoll)
# {{{ time stepping
step = 0
t = 0.0
while t < final_time:
if step % 10 == 0:
norm_q = actx.to_numpy(op.norm(dcoll, fields, 2))
logger.info("[%04d] t = %.5f |q| = %.5e", step, t, norm_q)
if visualize:
vis.write_vtk_file(
f"{exp_name}-{step:04d}.vtu",
[
("rho", fields.mass),
("energy", fields.energy),
("momentum", fields.momentum)
]
)
assert norm_q < 5
fields = actx.thaw(actx.freeze(fields))
fields = rk4_step(fields, t, dt, compiled_rhs)
t += dt
step += 1
# }}}
def main(ctx_factory, order=3, final_time=1, resolution=16,
overintegration=False, visualize=False, lazy=False):
cl_ctx = ctx_factory()
queue = cl.CommandQueue(cl_ctx)
allocator = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
actx = PytatoPyOpenCLArrayContext(queue, allocator=allocator)
actx = PyOpenCLArrayContext(queue, allocator=allocator)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
run_acoustic_pulse(
actx,
order=order,
resolution=resolution,
overintegration=overintegration,
final_time=final_time,
visualize=visualize
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--order", default=3, type=int)
parser.add_argument("--tfinal", default=0.1, type=float)
parser.add_argument("--resolution", default=16, type=int)
parser.add_argument("--oi", action="store_true",
help="use overintegration")
parser.add_argument("--visualize", action="store_true",
help="write out vtk output")
parser.add_argument("--lazy", action="store_true",
help="switch to a lazy computation mode")
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
main(cl.create_some_context,
order=args.order,
final_time=args.tfinal,
resolution=args.resolution,
overintegration=args.oi,
visualize=args.visualize,
lazy=args.lazy)