Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pyopencl.array
import pyopencl.clmath
from pytools.obj_array import join_fields, make_obj_array
from grudge import sym, bind, DGDiscretizationWithBoundaries
pytest_generate_tests_for_pyopencl
as pytest_generate_tests)
logging.basicConfig(level=logging.INFO)
Andreas Klöckner
committed
@pytest.mark.parametrize("dim", [2, 3])
def test_inverse_metric(ctx_factory, dim):
queue = cl.CommandQueue(cl_ctx)
from meshmode.mesh.generation import generate_regular_rect_mesh
Andreas Klöckner
committed
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim,
n=(6,)*dim, order=4)
def m(x):
result = np.empty_like(x)
result[0] = (
1.5*x[0] + np.cos(x[0])
+ 0.1*np.sin(10*x[1]))
result[1] = (
0.05*np.cos(10*x[0])
+ 1.3*x[1] + np.sin(x[1]))
if len(x) == 3:
result[2] = x[2]
return result
from meshmode.mesh.processing import map_mesh
mesh = map_mesh(mesh, m)
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4)
sym_op = (
sym.forward_metric_derivative_mat(mesh.dim)
.dot(
sym.inverse_metric_derivative_mat(mesh.dim)
)
.reshape(-1))
op = bind(discr, sym_op)
mat = op(queue).reshape(mesh.dim, mesh.dim)
for i in range(mesh.dim):
for j in range(mesh.dim):
tgt = 1 if i == j else 0
err = np.max(np.abs((mat[i, j] - tgt).get(queue=queue)))
logger.info("error[%d, %d]: %.5e", i, j, err)
assert err < 1.0e-12, (i, j, err)
# }}}
# {{{ mass operator trig integration
@pytest.mark.parametrize("ambient_dim", [1, 2, 3])
@pytest.mark.parametrize("quad_tag", [sym.QTAG_NONE, "OVSMP"])
def test_mass_mat_trig(ctx_factory, ambient_dim, quad_tag):
"""Check the integral of some trig functions on an interval using the mass
queue = cl.CommandQueue(cl_ctx)
nelements = 17
order = 4
a = -4.0 * np.pi
b = +9.0 * np.pi
true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1)
from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
dd_quad = sym.DOFDesc(sym.DTAG_VOLUME_ALL, quad_tag)
if quad_tag is sym.QTAG_NONE:
quad_tag_to_group_factory = {}
else:
quad_tag_to_group_factory = {
quad_tag: QuadratureSimplexGroupFactory(order=2*order)
}
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(a,)*ambient_dim, b=(b,)*ambient_dim,
n=(nelements,)*ambient_dim, order=1)
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order,
quad_tag_to_group_factory=quad_tag_to_group_factory)
def _get_variables_on(dd):
sym_f = sym.var("f", dd=dd)
sym_x = sym.nodes(ambient_dim, dd=dd)
sym_ones = sym.Ones(dd)
return sym_f, sym_x, sym_ones
sym_f, sym_x, sym_ones = _get_variables_on(sym.DD_VOLUME)
f_volm = bind(discr, sym.cos(sym_x[0])**2)(queue).get()
ones_volm = bind(discr, sym_ones)(queue).get()
sym_f, sym_x, sym_ones = _get_variables_on(dd_quad)
f_quad = bind(discr, sym.cos(sym_x[0])**2)(queue)
ones_quad = bind(discr, sym_ones)(queue)
mass_op = bind(discr, sym.MassOperator(dd_quad, sym.DD_VOLUME)(sym_f))
num_integral_1 = np.dot(ones_volm, mass_op(queue, f=f_quad).get())
err_1 = abs(num_integral_1 - true_integral)
assert err_1 < 5.0e-10, err_1
num_integral_2 = np.dot(f_volm, mass_op(queue, f=ones_quad).get())
err_2 = abs(num_integral_2 - true_integral)
assert err_2 < 5.0e-10, err_2
if quad_tag is sym.QTAG_NONE:
# NOTE: `integral` always makes a square mass matrix and
# `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
num_integral_3 = bind(discr,
sym.integral(sym_f, dd=dd_quad))(queue, f=f_quad)
err_3 = abs(num_integral_3 - true_integral)
assert err_3 < 5.0e-10, err_3
# }}}
# {{{ mass operator surface area
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def _ellipse_surface_area(radius, aspect_ratio):
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
eccentricity = 1.0 - (1/aspect_ratio)**2
if abs(aspect_ratio - 2.0) < 1.0e-14:
# NOTE: hardcoded value so we don't need scipy for the test
ellip_e = 1.2110560275684594
else:
from scipy.special import ellipe
ellip_e = ellipe(eccentricity)
return 4.0 * radius * ellip_e
def _spheroid_surface_area(radius, aspect_ratio):
# https://en.wikipedia.org/wiki/Ellipsoid#Surface_area
a = 1.0
c = aspect_ratio
if a < c:
e = np.sqrt(1.0 - (a/c)**2)
return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e))
else:
e = np.sqrt(1.0 - (c/a)**2)
return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e))
@pytest.mark.parametrize("name", [
"2-1-ellipse", "spheroid", "box2d", "box3d"
])
def test_mass_surface_area(ctx_factory, name):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
Loading
Loading full blame...