Skip to content
Snippets Groups Projects
test_mpi_communication.py 9.34 KiB
Newer Older
  • Learn to ignore specific revisions
  • Ellis's avatar
    Ellis committed
    __copyright__ = """
    Copyright (C) 2017 Ellis Hoag
    Copyright (C) 2017 Andreas Kloeckner
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    Copyright (C) 2021 University of Illinois Board of Trustees
    
    Ellis's avatar
    Ellis committed
    """
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    import pytest
    import os
    
    Ellis's avatar
    Ellis committed
    import numpy as np
    import pyopencl as cl
    
    Ellis's avatar
    Ellis committed
    import logging
    
    import sys
    
    from grudge.array_context import MPIPyOpenCLArrayContext, MPIPytatoArrayContext
    from arraycontext.container.traversal import thaw, freeze
    
    Ellis's avatar
    Ellis committed
    logger = logging.getLogger(__name__)
    
    logging.basicConfig()
    logger.setLevel(logging.INFO)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    from grudge import DiscretizationCollection
    
    from grudge.shortcuts import rk4_step
    
    from meshmode.dof_array import flat_norm
    
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    from pytools.obj_array import flat_obj_array
    
    import grudge.op as op
    
    # {{{ mpi test infrastructure
    
    DISTRIBUTED_ACTXS = [MPIPyOpenCLArrayContext, MPIPytatoArrayContext]
    
    
    def run_test_with_mpi(num_ranks, f, *args):
        import pytest
        pytest.importorskip("mpi4py")
    
        from pickle import dumps
        from base64 import b64encode
    
        invocation_info = b64encode(dumps((f, args))).decode()
        from subprocess import check_call
    
        # NOTE: CI uses OpenMPI; -x to pass env vars. MPICH uses -env
        check_call([
            "mpiexec", "-np", str(num_ranks),
            "-x", "RUN_WITHIN_MPI=1",
            "-x", f"INVOCATION_INFO={invocation_info}",
            sys.executable, __file__])
    
    
    def run_test_with_mpi_inner():
        from pickle import loads
        from base64 import b64decode
        f, (actx_class, *args) = loads(b64decode(os.environ["INVOCATION_INFO"].encode()))
    
        cl_context = cl.create_some_context()
        queue = cl.CommandQueue(cl_context)
    
    Ellis's avatar
    Ellis committed
    
        from mpi4py import MPI
        comm = MPI.COMM_WORLD
    
    
        if actx_class is MPIPytatoArrayContext:
            actx = actx_class(comm, queue, mpi_base_tag=15000)
        elif actx_class is MPIPyOpenCLArrayContext:
    
            actx = actx_class(comm, queue, force_device_scalars=True)
    
        else:
            raise ValueError("unknown actx_class")
    
        f(actx, *args)
    
    # }}}
    
    
    # {{{ func_comparison
    
    @pytest.mark.parametrize("actx_class", DISTRIBUTED_ACTXS)
    @pytest.mark.parametrize("num_ranks", [2])
    def test_func_comparison_mpi(actx_class, num_ranks):
        run_test_with_mpi(
                num_ranks, _test_func_comparison_mpi_communication_entrypoint,
                actx_class)
    
    
    def _test_func_comparison_mpi_communication_entrypoint(actx):
        """Discretize a function, communicate it, check that it matches the
        function discretized by the other end.
        """
    
        comm = actx.mpi_communicator
    
        from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
        from meshmode.mesh import BTAG_ALL
    
    
    Ellis's avatar
    Ellis committed
        num_parts = comm.Get_size()
    
        mesh_dist = MPIMeshDistributor(comm)
    
        if mesh_dist.is_mananger_rank():
            from meshmode.mesh.generation import generate_regular_rect_mesh
    
    Ellis's avatar
    Ellis committed
            mesh = generate_regular_rect_mesh(a=(-1,)*2,
                                              b=(1,)*2,
    
    Ellis's avatar
    Ellis committed
    
    
            part_per_element = get_partition_by_pymetis(mesh, num_parts)
    
    Ellis's avatar
    Ellis committed
    
            local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
        else:
            local_mesh = mesh_dist.receive_mesh_part()
    
    
        dcoll = DiscretizationCollection(actx, local_mesh, order=5)
    
    Ellis's avatar
    Ellis committed
    
    
        x = thaw(dcoll.nodes(), actx)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        myfunc = actx.np.sin(np.dot(x, [2, 3]))
    
        from grudge.dof_desc import as_dofdesc
    
        dd_int = as_dofdesc("int_faces")
        dd_vol = as_dofdesc("vol")
        dd_af = as_dofdesc("all_faces")
    
        all_faces_func = op.project(dcoll, dd_vol, dd_af, myfunc)
        int_faces_func = op.project(dcoll, dd_vol, dd_int, myfunc)
        bdry_faces_func = op.project(dcoll, BTAG_ALL, dd_af,
                                     op.project(dcoll, dd_vol, BTAG_ALL, myfunc))
    
        hopefully_zero = (
            op.project(
                dcoll, "int_faces", "all_faces",
                dcoll.opposite_face_connection()(int_faces_func)
            )
            + sum(op.project(dcoll, tpair.dd, "all_faces", tpair.int)
    
                  for tpair in op.cross_rank_trace_pairs(dcoll, myfunc,
                      comm_tag=SimpleTag))
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        ) - (all_faces_func - bdry_faces_func)
    
    Ellis's avatar
    Ellis committed
    
    
        error = actx.to_numpy(flat_norm(hopefully_zero, ord=np.inf))
    
    Ellis's avatar
    Ellis committed
    
    
        print(__file__)
        with np.printoptions(threshold=100000000, suppress=True):
            logger.debug(hopefully_zero)
        logger.info("error: %.5e", error)
    
    Ellis's avatar
    Ellis committed
    
        assert error < 1e-14
    
    
    Ellis's avatar
    Ellis committed
    
    
    # {{{ wave operator
    
    @pytest.mark.parametrize("actx_class", DISTRIBUTED_ACTXS)
    @pytest.mark.parametrize("num_ranks", [2])
    def test_mpi_wave_op(actx_class, num_ranks):
        run_test_with_mpi(num_ranks, _test_mpi_wave_op_entrypoint, actx_class)
    
    
    def _test_mpi_wave_op_entrypoint(actx, visualize=False):
        comm = actx.mpi_communicator
    
    Ellis's avatar
    Ellis committed
        i_local_rank = comm.Get_rank()
    
    Ellis's avatar
    Ellis committed
        num_parts = comm.Get_size()
    
    
        from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    
    Ellis's avatar
    Ellis committed
        mesh_dist = MPIMeshDistributor(comm)
    
    
    Ellis's avatar
    Ellis committed
        dim = 2
    
    Ellis's avatar
    Ellis committed
        order = 4
    
    Ellis's avatar
    Ellis committed
        if mesh_dist.is_mananger_rank():
            from meshmode.mesh.generation import generate_regular_rect_mesh
    
    Ellis's avatar
    Ellis committed
            mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
                                              b=(0.5,)*dim,
    
            part_per_element = get_partition_by_pymetis(mesh, num_parts)
    
    Ellis's avatar
    Ellis committed
    
            local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    
            del mesh
    
    Ellis's avatar
    Ellis committed
        else:
            local_mesh = mesh_dist.receive_mesh_part()
    
    
        dcoll = DiscretizationCollection(actx, local_mesh, order=order)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    
        def source_f(actx, dcoll, t=0):
            source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
            source_width = 0.05
            source_omega = 3
    
            nodes = thaw(dcoll.nodes(), actx)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
            source_center_dist = flat_obj_array(
                [nodes[i] - source_center[i] for i in range(dcoll.dim)]
            )
            return (
    
                actx.np.sin(source_omega*t)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
                * actx.np.exp(
                    -np.dot(source_center_dist, source_center_dist)
                    / source_width**2
                )
            )
    
    Ellis's avatar
    Ellis committed
    
    
        from grudge.models.wave import WeakWaveOperator
    
    Ellis's avatar
    Ellis committed
        from meshmode.mesh import BTAG_ALL, BTAG_NONE
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    
        wave_op = WeakWaveOperator(
            dcoll,
            0.1,
            source_f=source_f,
            dirichlet_tag=BTAG_NONE,
            neumann_tag=BTAG_NONE,
            radiation_tag=BTAG_ALL,
    
            flux_type="upwind",
            comm_tag=SimpleTag,
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        )
    
        fields = flat_obj_array(
            dcoll.zeros(actx),
            [dcoll.zeros(actx) for i in range(dcoll.dim)]
        )
    
    Ellis's avatar
    Ellis committed
    
    
        # FIXME: Sketchy, empirically determined fudge factor
    
        dt = actx.to_numpy(
    
            0.45 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields))
    
    Ellis's avatar
    Ellis committed
    
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        wave_op.check_bc_coverage(local_mesh)
    
    Ellis's avatar
    Ellis committed
    
    
        from logpyle import LogManager, \
    
    Ellis Hoag's avatar
    Ellis Hoag committed
                add_general_quantities, \
    
    Thomas Gibson's avatar
    Thomas Gibson committed
                add_run_info
    
    Ellis Hoag's avatar
    Ellis Hoag committed
        log_filename = None
    
    Ellis Hoag's avatar
    Ellis Hoag committed
        # NOTE: LogManager hangs when using a file on a shared directory.
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
        # log_filename = "grudge_log.dat"
    
    Ellis Hoag's avatar
    Ellis Hoag committed
        logmgr = LogManager(log_filename, "w", comm)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
    
    Ellis's avatar
    Ellis committed
    
        def rhs(t, w):
    
    Thomas Gibson's avatar
    Thomas Gibson committed
            return wave_op.operator(t, w)
    
    Ellis's avatar
    Ellis committed
    
    
        compiled_rhs = actx.compile(rhs)
    
    Ellis's avatar
    Ellis committed
    
    
    Ellis's avatar
    Ellis committed
        final_t = 4
    
    Ellis's avatar
    Ellis committed
        nsteps = int(final_t/dt)
    
        logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps)
    
    Ellis's avatar
    Ellis committed
        step = 0
    
        from time import time
        t_last_step = time()
    
    
        if visualize:
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(dcoll)
    
        logmgr.tick_before()
        for step in range(nsteps):
            t = step*dt
            fields = rk4_step(fields, t=t, h=dt, f=compiled_rhs)
            fields = thaw(freeze(fields, actx), actx)
    
            norm = actx.to_numpy(op.norm(dcoll, fields, 2))
            logger.info("[%04d] t = %.5e |u| = %.5e elapsed %.5e",
                        step, t, norm, time() - t_last_step)
    
            if visualize:
                vis.write_parallel_vtk_file(
                    comm,
                    f"fld-wave-mpi-{type(actx).__name__}-{{rank:03d}}-{step:04d}.vtu",
                    [
                        ("u", fields[0]),
                        ("v", fields[1:]),
                    ]
                )
            assert norm < 1
    
            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()
    
    Ellis Hoag's avatar
    Ellis Hoag committed
    
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        logmgr.tick_after()
    
    Ellis Hoag's avatar
    Ellis Hoag committed
        logmgr.close()
    
        logger.info("Rank %d exiting", i_local_rank)
    
    Ellis's avatar
    Ellis committed
    
    
    Ellis's avatar
    Ellis committed
    if __name__ == "__main__":
    
    Ellis's avatar
    Ellis committed
        if "RUN_WITHIN_MPI" in os.environ:
    
            run_test_with_mpi_inner()
        elif len(sys.argv) > 1:
            exec(sys.argv[1])
    
    Ellis's avatar
    Ellis committed
        else:
    
            from pytest import main
            main([__file__])
    
    
    Ellis's avatar
    Ellis committed
    # vim: fdm=marker