Skip to content
Snippets Groups Projects
var-propagation-speed.py 5.26 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = """
    Copyright (C) 2015 Andreas Kloeckner
    Copyright (C) 2021 University of Illinois Board of Trustees
    """
    
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    import numpy as np
    
    import pyopencl.tools as cl_tools
    
    from arraycontext import PyOpenCLArrayContext, thaw
    
    
    from grudge.shortcuts import set_up_rk4
    from grudge import DiscretizationCollection
    
    from pytools.obj_array import flat_obj_array
    
    import grudge.op as op
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    import logging
    logger = logging.getLogger(__name__)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
    
    def main(ctx_factory, dim=2, order=4, visualize=False):
        cl_ctx = ctx_factory()
    
        actx = PyOpenCLArrayContext(
            queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))
        )
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
    
    Thomas Gibson's avatar
    Thomas Gibson committed
                a=(-0.5,)*dim,
                b=(0.5,)*dim,
                nelements_per_axis=(20,)*dim)
    
        dcoll = DiscretizationCollection(actx, mesh, order=order)
    
        def source_f(actx, dcoll, t=0):
            source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
            source_width = 0.05
            source_omega = 3
    
            nodes = thaw(dcoll.nodes(), actx)
    
            source_center_dist = flat_obj_array(
                [nodes[i] - source_center[i] for i in range(dcoll.dim)]
            )
            return (
                np.sin(source_omega*t)
                * actx.np.exp(
                    -np.dot(source_center_dist, source_center_dist)
                    / source_width**2
                )
            )
    
    
        x = thaw(dcoll.nodes(), actx)
    
        ones = dcoll.zeros(actx) + 1
    
        c = actx.np.where(np.dot(x, x) < 0.15, 0.1 * ones, 0.2 * ones)
    
    
        from grudge.models.wave import VariableCoefficientWeakWaveOperator
        from meshmode.mesh import BTAG_ALL, BTAG_NONE
    
    
        wave_op = VariableCoefficientWeakWaveOperator(
            dcoll,
            c,
            source_f=source_f,
            dirichlet_tag=BTAG_NONE,
            neumann_tag=BTAG_NONE,
            radiation_tag=BTAG_ALL,
            flux_type="upwind"
        )
    
        fields = flat_obj_array(
            dcoll.zeros(actx),
            [dcoll.zeros(actx) for i in range(dcoll.dim)]
        )
    
        wave_op.check_bc_coverage(mesh)
    
            return wave_op.operator(t, w)
    
        dt_scaling_const = 2/3
        dt = dt_scaling_const * wave_op.estimate_rk4_timestep(dcoll, fields=fields)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        nsteps = int(final_t/dt) + 1
    
        logger.info("dt=%g nsteps=%d", dt, nsteps)
    
        vis = make_visualizer(dcoll)
    
        def norm(u):
            return op.norm(dcoll, u, 2)
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        if visualize:
    
            u = fields[0]
            v = fields[1:]
            vis.write_vtk_file(
    
                f"fld-var-propogation-speed-{step:04d}.vtu",
    
        for event in dt_stepper.run(t_end=final_t):
            if isinstance(event, dt_stepper.StateComputed):
                assert event.component_id == "w"
    
                step += 1
    
                if step % 10 == 0:
    
    Thomas Gibson's avatar
    Thomas Gibson committed
                    logger.info(f"step: {step} t: {time()-t_last_step} "
                                f"L2: {norm(u=event.state_component[0])}")
                    if visualize:
    
                        vis.write_vtk_file(
    
                            f"fld-var-propogation-speed-{step:04d}.vtu",
    
                            [
                                ("u", event.state_component[0]),
                                ("v", event.state_component[1:]),
    
    
                # NOTE: These are here to ensure the solution is bounded for the
                # time interval specified
    
                assert norm(u=event.state_component[0]) < 1
    
    Thomas Gibson's avatar
    Thomas Gibson committed
        import argparse
    
        parser = argparse.ArgumentParser()
        parser.add_argument("--dim", default=2, type=int)
        parser.add_argument("--order", default=4, type=int)
        parser.add_argument("--visualize", action="store_true")
        args = parser.parse_args()
    
        logging.basicConfig(level=logging.INFO)
        main(cl.create_some_context,
             dim=args.dim,
             order=args.order,
             visualize=args.visualize)