Newer
Older
# Copyright (C) 2009 Andreas Stock
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import numpy
def main(write_output=True, flux_type_arg="central", use_quadrature=True,
final_time=20):
from math import sin, cos, pi, sqrt
rcon = guess_run_context()
# mesh setup --------------------------------------------------------------
if rcon.is_head_rank:
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
mesh = make_rect_mesh(a=(-1,-1),b=(1,1),max_area=0.008)
if rcon.is_head_rank:
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
# space-time-dependent-velocity-field -------------------------------------
# simple vortex
class TimeDependentVField:
""" `TimeDependentVField` is a callable expecting `(x, t)` representing space and time
`x` is of the length of the spatial dimension and `t` is the time."""
shape = (2,)
def __call__(self, pt, el, t):
x, y = pt
# Correction-Factor to make the speed zero on the on the boundary
#fac = (1-x**2)*(1-y**2)
fac = 1.
return numpy.array([-y*fac, x*fac]) * cos(pi*t)
class VField:
""" `VField` is a callable expecting `(x)` representing space
`x` is of the length of the spatial dimension."""
shape = (2,)
def __call__(self, pt, el):
x, y = pt
# Correction-Factor to make the speed zero on the on the boundary
#fac = (1-x**2)*(1-y**2)
fac = 1.
return numpy.array([-y*fac, x*fac])
# space-time-dependent State BC (optional)-----------------------------------
class TimeDependentBc_u:
""" space and time dependent BC for state u"""
def __call__(self, pt, el, t):
x, y = pt
if t <= 0.5:
if x > 0:
return 1
else:
return 0
else:
return 0
class Bc_u:
""" Only space dependent BC for state u"""
def __call__(seld, pt, el):
x, y = pt
if x > 0:
return 1
else:
return 0
# operator setup ----------------------------------------------------------
# In the operator setup it is possible to switch between a only space
# dependent velocity field `VField` or a time and space dependent
# `TimeDependentVField`.
# For `TimeDependentVField`: advec_v=TimeDependentGivenFunction(VField())
# For `VField`: advec_v=TimeConstantGivenFunction(GivenFunction(VField()))
# Same for the Bc_u Function! If you don't define Bc_u then the BC for u = 0.
ConstantGivenFunction, \
TimeConstantGivenFunction, \
TimeDependentGivenFunction, \
GivenFunction
from grudge.models.advection import VariableCoefficientAdvectionOperator
op = VariableCoefficientAdvectionOperator(mesh.dimensions,
#advec_v=TimeDependentGivenFunction(
# TimeDependentVField()),
advec_v=TimeConstantGivenFunction(
GivenFunction(VField())),
#bc_u_f=TimeDependentGivenFunction(
# TimeDependentBc_u()),
bc_u_f=TimeConstantGivenFunction(
GivenFunction(Bc_u())),
flux_type=flux_type_arg)
# discretization setup ----------------------------------------------------
order = 5
if use_quadrature:
quad_min_degrees = {"quad": 3*order}
else:
quad_min_degrees = {}
discr = rcon.make_discretization(mesh_data, order=order,
default_scalar_type=numpy.float64,
debug=["cuda_no_plan"],
quad_min_degrees=quad_min_degrees,
)
vis_discr = discr
# visualization setup -----------------------------------------------------
if write_output:
vis = VtkVisualizer(vis_discr, rcon, "fld")
# initial condition -------------------------------------------------------
if True:
def initial(pt, el):
# Gauss pulse
from math import exp
x = (pt-numpy.array([0.3, 0.5]))*8
return exp(-numpy.dot(x, x))
else:
def initial(pt, el):
# Rectangle
x, y = pt
if abs(x) < 0.5 and abs(y) < 0.2:
return 2
else:
return 1
u = discr.interpolate_volume_function(initial)
# timestep setup ----------------------------------------------------------
from grudge.timestep.runge_kutta import LSRK4TimeStepper
stepper = LSRK4TimeStepper(
vector_primitive_factory=discr.get_vector_primitive_factory())
if rcon.is_head_rank:
# filter setup-------------------------------------------------------------
from grudge.discretization import ExponentialFilterResponseFunction
from grudge.symbolic.operators import FilterOperator
mode_filter = FilterOperator(
ExponentialFilterResponseFunction(min_amplification=0.9,order=4))\
.bind(discr)
# diagnostics setup -------------------------------------------------------
from pytools.log import LogManager, \
add_general_quantities, \
add_simulation_quantities, \
add_run_info
if write_output:
log_file_name = "space-dep.dat"
else:
log_file_name = None
logmgr = LogManager(log_file_name, "w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
u_getter = lambda: u
logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))
logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])
# Initialize v for data output:
v = op.advec_v.volume_interpolant(0, discr)
# timestep loop -----------------------------------------------------------
rhs = op.bind(discr)
try:
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
step_it = times_and_steps(
final_time=final_time, logmgr=logmgr,
max_dt_getter=lambda t: op.estimate_timestep(discr,
stepper=stepper, t=t, fields=u))
for step, t, dt in step_it:
if step % 10 == 0 and write_output:
visf = vis.make_file("fld-%04d" % step)
vis.add_data(visf, [
("u", discr.convert_volume(u, kind="numpy")),
("v", discr.convert_volume(v, kind="numpy"))
], time=t, step=step)
visf.close()
u = stepper(u, t, dt, rhs)
# We're feeding in a discontinuity through the BCs.
# Quadrature does not help with shock capturing--
# therefore we do need to filter here, regardless
# of whether quadrature is enabled.
u = mode_filter(u)
assert discr.norm(u) < 10
finally:
if write_output:
vis.close()
logmgr.close()
discr.close()
if __name__ == "__main__":
main()
# entry points for py.test ----------------------------------------------------
def test_var_velocity_advection():
from pytools.test import mark_test
mark_long = mark_test.long
for flux_type in ["upwind", "central", "lf"]:
for use_quadrature in [False, True]:
descr = "variable-velocity-advection with %s flux" % flux_type
if use_quadrature:
descr += " and quadrature"
yield descr, mark_long(main), False, flux_type, use_quadrature, 1