Skip to content
Snippets Groups Projects
test_mpi_communication.py 9.48 KiB
Newer Older
Ellis's avatar
Ellis committed
__copyright__ = """
Copyright (C) 2017 Ellis Hoag
Copyright (C) 2017 Andreas Kloeckner
Thomas Gibson's avatar
Thomas Gibson committed
Copyright (C) 2021 University of Illinois Board of Trustees
Ellis's avatar
Ellis committed
"""

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

import pytest
import os
Ellis's avatar
Ellis committed
import numpy as np
import pyopencl as cl
Ellis's avatar
Ellis committed
import logging
import sys
from grudge.array_context import MPIPyOpenCLArrayContext, MPIPytatoArrayContext
Ellis's avatar
Ellis committed
logger = logging.getLogger(__name__)
logging.basicConfig()
logger.setLevel(logging.INFO)
Thomas Gibson's avatar
Thomas Gibson committed
from grudge import DiscretizationCollection
from grudge.shortcuts import rk4_step
from meshmode.dof_array import flat_norm

Thomas Gibson's avatar
Thomas Gibson committed
from pytools.obj_array import flat_obj_array

import grudge.op as op
import grudge.dof_desc as dof_desc
# {{{ mpi test infrastructure
DISTRIBUTED_ACTXS = [MPIPyOpenCLArrayContext, MPIPytatoArrayContext]


def run_test_with_mpi(num_ranks, f, *args):
    import pytest
    pytest.importorskip("mpi4py")

    from pickle import dumps
    from base64 import b64encode

    invocation_info = b64encode(dumps((f, args))).decode()
    from subprocess import check_call

    # NOTE: CI uses OpenMPI; -x to pass env vars. MPICH uses -env
    check_call([
        "mpiexec", "-np", str(num_ranks),
        "-x", "RUN_WITHIN_MPI=1",
        "-x", f"INVOCATION_INFO={invocation_info}",
        sys.executable, __file__])


def run_test_with_mpi_inner():
    from pickle import loads
    from base64 import b64decode
    f, (actx_class, *args) = loads(b64decode(os.environ["INVOCATION_INFO"].encode()))

    cl_context = cl.create_some_context()
    queue = cl.CommandQueue(cl_context)
Ellis's avatar
Ellis committed

    from mpi4py import MPI
    comm = MPI.COMM_WORLD

    if actx_class is MPIPytatoArrayContext:
        actx = actx_class(comm, queue, mpi_base_tag=15000)
    elif actx_class is MPIPyOpenCLArrayContext:
        actx = actx_class(comm, queue, force_device_scalars=True)
    else:
        raise ValueError("unknown actx_class")

    f(actx, *args)

# }}}


# {{{ func_comparison

@pytest.mark.parametrize("actx_class", DISTRIBUTED_ACTXS)
@pytest.mark.parametrize("num_ranks", [2])
def test_func_comparison_mpi(actx_class, num_ranks):
    run_test_with_mpi(
            num_ranks, _test_func_comparison_mpi_communication_entrypoint,
            actx_class)


def _test_func_comparison_mpi_communication_entrypoint(actx):
    """Discretize a function, communicate it, check that it matches the
    function discretized by the other end.
    """

    comm = actx.mpi_communicator

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    from meshmode.mesh import BTAG_ALL

Ellis's avatar
Ellis committed
    num_parts = comm.Get_size()

    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
Ellis's avatar
Ellis committed
        mesh = generate_regular_rect_mesh(a=(-1,)*2,
                                          b=(1,)*2,
Ellis's avatar
Ellis committed

        part_per_element = get_partition_by_pymetis(mesh, num_parts)
Ellis's avatar
Ellis committed

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    dcoll = DiscretizationCollection(actx, local_mesh, order=5)
Ellis's avatar
Ellis committed

    x = actx.thaw(dcoll.nodes())
Thomas Gibson's avatar
Thomas Gibson committed
    myfunc = actx.np.sin(np.dot(x, [2, 3]))

    from grudge.dof_desc import as_dofdesc

    dd_int = as_dofdesc("int_faces")
    dd_vol = as_dofdesc("vol")
    dd_af = as_dofdesc("all_faces")

    all_faces_func = op.project(dcoll, dd_vol, dd_af, myfunc)
    int_faces_func = op.project(dcoll, dd_vol, dd_int, myfunc)
    bdry_faces_func = op.project(dcoll, BTAG_ALL, dd_af,
                                 op.project(dcoll, dd_vol, BTAG_ALL, myfunc))

    def hopefully_zero():
        return (
            op.project(
                dcoll, "int_faces", "all_faces",
                dcoll.opposite_face_connection(
                    dof_desc.BoundaryDomainTag(
                        dof_desc.FACE_RESTR_INTERIOR, dof_desc.VTAG_ALL)
                    )(int_faces_func)
            )
            + sum(op.project(dcoll, tpair.dd, "all_faces", tpair.ext)
                  for tpair in op.cross_rank_trace_pairs(dcoll, myfunc,
                      comm_tag=SimpleTag))
        ) - (all_faces_func - bdry_faces_func)

    hopefully_zero_result = actx.compile(hopefully_zero)()

    error = actx.to_numpy(flat_norm(hopefully_zero_result, ord=np.inf))

    with np.printoptions(threshold=100000000, suppress=True):
        logger.debug(hopefully_zero)
    logger.info("error: %.5e", error)
Ellis's avatar
Ellis committed

    assert error < 1e-14

Ellis's avatar
Ellis committed

# {{{ wave operator

@pytest.mark.parametrize("actx_class", DISTRIBUTED_ACTXS)
@pytest.mark.parametrize("num_ranks", [2])
def test_mpi_wave_op(actx_class, num_ranks):
    run_test_with_mpi(num_ranks, _test_mpi_wave_op_entrypoint, actx_class)


def _test_mpi_wave_op_entrypoint(actx, visualize=False):
    comm = actx.mpi_communicator
Ellis's avatar
Ellis committed
    i_local_rank = comm.Get_rank()
Ellis's avatar
Ellis committed
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
Ellis's avatar
Ellis committed
    mesh_dist = MPIMeshDistributor(comm)

Ellis's avatar
Ellis committed
    dim = 2
Ellis's avatar
Ellis committed
    order = 4
Ellis's avatar
Ellis committed
    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
Ellis's avatar
Ellis committed
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
                                          b=(0.5,)*dim,
        part_per_element = get_partition_by_pymetis(mesh, num_parts)
Ellis's avatar
Ellis committed

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
Thomas Gibson's avatar
Thomas Gibson committed

        del mesh
Ellis's avatar
Ellis committed
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    dcoll = DiscretizationCollection(actx, local_mesh, order=order)
Thomas Gibson's avatar
Thomas Gibson committed

    def source_f(actx, dcoll, t=0):
        source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
        source_width = 0.05
        source_omega = 3
        nodes = actx.thaw(dcoll.nodes())
Thomas Gibson's avatar
Thomas Gibson committed
        source_center_dist = flat_obj_array(
            [nodes[i] - source_center[i] for i in range(dcoll.dim)]
        )
        return (
            actx.np.sin(source_omega*t)
Thomas Gibson's avatar
Thomas Gibson committed
            * actx.np.exp(
                -np.dot(source_center_dist, source_center_dist)
                / source_width**2
            )
        )
Ellis's avatar
Ellis committed

    from grudge.models.wave import WeakWaveOperator
Ellis's avatar
Ellis committed
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
Thomas Gibson's avatar
Thomas Gibson committed

    wave_op = WeakWaveOperator(
        dcoll,
        0.1,
        source_f=source_f,
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind",
        comm_tag=SimpleTag,
Thomas Gibson's avatar
Thomas Gibson committed
    )

    fields = flat_obj_array(
        dcoll.zeros(actx),
        [dcoll.zeros(actx) for i in range(dcoll.dim)]
    )
Ellis's avatar
Ellis committed

    dt = actx.to_numpy(
        wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields))
Ellis's avatar
Ellis committed

Thomas Gibson's avatar
Thomas Gibson committed
    wave_op.check_bc_coverage(local_mesh)
Ellis's avatar
Ellis committed

    from logpyle import LogManager, \
Ellis Hoag's avatar
Ellis Hoag committed
            add_general_quantities, \
Thomas Gibson's avatar
Thomas Gibson committed
            add_run_info
Ellis Hoag's avatar
Ellis Hoag committed
    log_filename = None
Ellis Hoag's avatar
Ellis Hoag committed
    # NOTE: LogManager hangs when using a file on a shared directory.
Alexandru Fikl's avatar
Alexandru Fikl committed
    # log_filename = "grudge_log.dat"
Ellis Hoag's avatar
Ellis Hoag committed
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
Ellis's avatar
Ellis committed

    def rhs(t, w):
Thomas Gibson's avatar
Thomas Gibson committed
        return wave_op.operator(t, w)
Ellis's avatar
Ellis committed

    compiled_rhs = actx.compile(rhs)
Ellis's avatar
Ellis committed

Ellis's avatar
Ellis committed
    final_t = 4
Ellis's avatar
Ellis committed
    nsteps = int(final_t/dt)
    logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps)
Ellis's avatar
Ellis committed
    step = 0

    from time import time
    t_last_step = time()

    if visualize:
        from grudge.shortcuts import make_visualizer
        vis = make_visualizer(dcoll)
    logmgr.tick_before()
    for step in range(nsteps):
        t = step*dt
        fields = rk4_step(fields, t=t, h=dt, f=compiled_rhs)
        fields = actx.thaw(actx.freeze(fields))

        norm = actx.to_numpy(op.norm(dcoll, fields, 2))
        logger.info("[%04d] t = %.5e |u| = %.5e elapsed %.5e",
                    step, t, norm, time() - t_last_step)

        if visualize:
            vis.write_parallel_vtk_file(
                comm,
                f"fld-wave-mpi-{type(actx).__name__}-{{rank:03d}}-{step:04d}.vtu",
                [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ]
            )
        assert norm < 1
        t_last_step = time()
        logmgr.tick_after()
        logmgr.tick_before()
Ellis Hoag's avatar
Ellis Hoag committed

Thomas Gibson's avatar
Thomas Gibson committed
    logmgr.tick_after()
Ellis Hoag's avatar
Ellis Hoag committed
    logmgr.close()
    logger.info("Rank %d exiting", i_local_rank)
Ellis's avatar
Ellis committed

Ellis's avatar
Ellis committed
if __name__ == "__main__":
Ellis's avatar
Ellis committed
    if "RUN_WITHIN_MPI" in os.environ:
        run_test_with_mpi_inner()
    elif len(sys.argv) > 1:
        exec(sys.argv[1])
Ellis's avatar
Ellis committed
    else:
        from pytest import main
        main([__file__])

Ellis's avatar
Ellis committed
# vim: fdm=marker