Newer
Older
__copyright__ = "Copyright (C) 2008 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import numpy
import numpy.linalg as la
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def make_squaremesh():
def round_trip_connect(seq):
result = []
for i in range(len(seq)):
result.append((i, (i+1)%len(seq)))
return result
def needs_refinement(vertices, area):
x = sum(numpy.array(v) for v in vertices)/3
max_area_volume = 0.7e-2 + 0.03*(0.05*x[1]**2 + 0.3*min(x[0]+1,0)**2)
max_area_corners = 1e-3 + 0.001*max(
la.norm(x-corner)**4 for corner in obstacle_corners)
return bool(area > 2.5*min(max_area_volume, max_area_corners))
from meshpy.geometry import make_box
points, facets, _, _ = make_box((-0.5,-0.5), (0.5,0.5))
obstacle_corners = points[:]
from meshpy.geometry import GeometryBuilder, Marker
profile_marker = Marker.FIRST_USER_MARKER
builder = GeometryBuilder()
builder.add_geometry(points=points, facets=facets,
facet_markers=profile_marker)
points, facets, _, facet_markers = make_box((-16, -22), (25, 22))
builder.add_geometry(points=points, facets=facets,
facet_markers=facet_markers)
from meshpy.triangle import MeshInfo, build
mi = MeshInfo()
builder.set(mi)
mi.set_holes([(0,0)])
mesh = build(mi, refinement_func=needs_refinement,
allow_boundary_steiner=True,
generate_faces=True)
from meshpy.triangle import write_gnuplot_mesh
write_gnuplot_mesh("mesh.dat", mesh)
fvi2fm = mesh.face_vertex_indices_to_face_marker
face_marker_to_tag = {
profile_marker: "noslip",
Marker.MINUS_X: "inflow",
Marker.PLUS_X: "outflow",
Marker.MINUS_Y: "inflow",
Marker.PLUS_Y: "inflow"
}
def bdry_tagger(fvi, el, fn, all_v):
face_marker = fvi2fm[fvi]
return [face_marker_to_tag[face_marker]]
vertices = numpy.asarray(mesh.points, dtype=float, order="C")
return make_conformal_mesh_ext(
vertices,
[Triangle(i, el_idx, vertices)
for i, el_idx in enumerate(mesh.elements)],
bdry_tagger)
def main():
import logging
logging.basicConfig(level=logging.INFO)
rcon = guess_run_context()
if rcon.is_head_rank:
if True:
mesh = make_squaremesh()
else:
mesh = make_rect_mesh(
boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"],
max_area=0.1)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
from pytools import add_python_path_relative_to_script
add_python_path_relative_to_script(".")
for order in [3]:
from gas_dynamics_initials import UniformMachFlow
square = UniformMachFlow(gaussian_pulse_at=numpy.array([-2, 2]),
pulse_magnitude=0.003)
GasDynamicsOperator,
GammaLawEOS)
op = GasDynamicsOperator(dimensions=2,
equation_of_state=GammaLawEOS(square.gamma), mu=square.mu,
prandtl=square.prandtl, spec_gas_const=square.spec_gas_const,
bc_inflow=square, bc_outflow=square, bc_noslip=square,
inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")
discr = rcon.make_discretization(mesh_data, order=order,
debug=["cuda_no_plan",
"cuda_dump_kernels",
#"dump_dataflow_graph",
#"dump_optemplate_stages",
#"dump_dataflow_graph",
#"dump_op_code"
#"cuda_no_plan_el_local"
],
default_scalar_type=numpy.float64,
quad_min_degrees={
"gasdyn_vol": 3*order,
"gasdyn_face": 3*order,
}
)
from grudge.visualization import SiloVisualizer, VtkVisualizer
#vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
vis = SiloVisualizer(discr, rcon)
LSRK4TimeStepper, ODE23TimeStepper, ODE45TimeStepper)
#stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type,
#vector_primitive_factory=discr.get_vector_primitive_factory())
stepper = ODE23TimeStepper(dtype=discr.default_scalar_type,
rtol=1e-6,
vector_primitive_factory=discr.get_vector_primitive_factory())
# Dumka works kind of poorly
#stepper = Dumka3TimeStepper(dtype=discr.default_scalar_type,
#rtol=1e-7, pol_index=2,
#vector_primitive_factory=discr.get_vector_primitive_factory())
#from grudge.timestep.dumka3 import Dumka3TimeStepper
#stepper = Dumka3TimeStepper(3, rtol=1e-7)
# diagnostics setup ---------------------------------------------------
from logpyle import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
logmgr = LogManager("cns-square-sp-%d.dat" % order, "w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
from logpyle import LogQuantity
class ChangeSinceLastStep(LogQuantity):
"""Records the change of a variable between a time step and the previous
one"""
def __init__(self, name="change"):
LogQuantity.__init__(self, name, "1", "Change since last time step")
self.old_fields = 0
def __call__(self):
result = discr.norm(fields - self.old_fields)
self.old_fields = fields
return result
#logmgr.add_quantity(ChangeSinceLastStep())
add_simulation_quantities(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# filter setup ------------------------------------------------------------
from grudge.discretization import Filter, ExponentialFilterResponseFunction
mode_filter = Filter(discr,
ExponentialFilterResponseFunction(min_amplification=0.95, order=6))
# timestep loop -------------------------------------------------------
fields = square.volume_interpolant(0, discr)
navierstokes_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = navierstokes_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements=", len(mesh.elements))
step_it = times_and_steps(
final_time=1000,
#max_steps=500,
logmgr=logmgr,
max_dt_getter=lambda t: next_dt,
taken_dt_getter=lambda: taken_dt)
model_stepper = LSRK4TimeStepper()
next_dt = op.estimate_timestep(discr,
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
max_eigenvalue=max_eigval[0])
for step, t, dt in step_it:
#if (step % 10000 == 0): #and step < 950000) or (step % 500 == 0 and step > 950000):
#if False:
if step % 5 == 0:
visf = vis.make_file("square-%d-%06d" % (order, step))
#from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
],
expressions=[
("p", "(0.4)*(e- 0.5*(rho_u*u))"),
],
time=t, step=step
)
visf.close()
if stepper.adaptive:
fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
else:
taken_dt = dt
fields = stepper(fields, t, dt, rhs)
dt = op.estimate_timestep(discr,
stepper=model_stepper, t=0,
max_eigenvalue=max_eigval[0])
#fields = mode_filter(fields)
finally:
vis.close()
logmgr.save()
discr.close()
if __name__ == "__main__":
main()