Skip to content
Snippets Groups Projects
vortex-sources.py 12.8 KiB
Newer Older
__copyright__ = "Copyright (C) 2008 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""



from __future__ import division
Andreas Klöckner's avatar
Andreas Klöckner committed
from __future__ import absolute_import
from __future__ import print_function
import numpy
import numpy.linalg as la

# modifies isentropic vortex solution so that rho->Arho, P->A^gamma rho^gamma
# this will be analytic solution if appropriate source terms are added
# to the RHS. coded for vel_x=1, vel_y=0


class Vortex:
    def __init__(self, beta, gamma, center, velocity, densityA):
        self.beta = beta
        self.gamma = gamma
        self.center = numpy.asarray(center)
        self.velocity = numpy.asarray(velocity)
        self.densityA = densityA

    def __call__(self, t, x_vec):
        vortex_loc = self.center + t*self.velocity

        # coordinates relative to vortex center
        x_rel = x_vec[0] - vortex_loc[0]
        y_rel = x_vec[1] - vortex_loc[1]

        # Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159
        # also JSH/TW Nodal DG Methods, p. 209

        from math import pi
        r = numpy.sqrt(x_rel**2+y_rel**2)
        expterm = self.beta*numpy.exp(1-r**2)
        u = self.velocity[0] - expterm*y_rel/(2*pi)
        v = self.velocity[1] + expterm*x_rel/(2*pi)
        rho = self.densityA*(1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1))
        p = rho**self.gamma

        e = p/(self.gamma-1) + rho/2*(u**2+v**2)

Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.tools import join_fields
        return join_fields(rho, e, rho*u, rho*v)

    def volume_interpolant(self, t, discr):
        return discr.convert_volume(
                        self(t, discr.nodes.T
                            .astype(discr.default_scalar_type)),
                        kind=discr.compute_kind)

    def boundary_interpolant(self, t, discr, tag):
        return discr.convert_boundary(
                        self(t, discr.get_boundary(tag).nodes.T
                            .astype(discr.default_scalar_type)),
                         tag=tag, kind=discr.compute_kind)



class SourceTerms:
    def __init__(self, beta, gamma, center, velocity, densityA):
        self.beta = beta
        self.gamma = gamma
        self.center = numpy.asarray(center)
        self.velocity = numpy.asarray(velocity)
        self.densityA = densityA



    def __call__(self,t,x_vec,q):

        vortex_loc = self.center + t*self.velocity

        # coordinates relative to vortex center
        x_rel = x_vec[0] - vortex_loc[0]
        y_rel = x_vec[1] - vortex_loc[1]

        # sources written in terms of A=1.0 solution
        # (standard isentropic vortex)

        from math import pi
        r = numpy.sqrt(x_rel**2+y_rel**2)
        expterm = self.beta*numpy.exp(1-r**2)
        u = self.velocity[0] - expterm*y_rel/(2*pi)
        v = self.velocity[1] + expterm*x_rel/(2*pi)
        rho = (1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1))
        p = rho**self.gamma

        #computed necessary derivatives
        expterm_t = 2*expterm*x_rel
        expterm_x = -2*expterm*x_rel
        expterm_y = -2*expterm*y_rel
        u_x = -expterm*y_rel/(2*pi)*(-2*x_rel)
        v_y = expterm*x_rel/(2*pi)*(-2*y_rel)

        #derivatives for rho (A=1)
        facG=self.gamma-1
        rho_t = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
                (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_t)
        rho_x = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
                (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_x)
        rho_y = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
                (-facG/(16*self.gamma*pi**2)*2*expterm*expterm_y)

        #derivatives for rho (A=1) to the power of gamma
        rho_gamma_t = self.gamma*rho**(self.gamma-1)*rho_t
        rho_gamma_x = self.gamma*rho**(self.gamma-1)*rho_x
        rho_gamma_y = self.gamma*rho**(self.gamma-1)*rho_y


        factorA=self.densityA**self.gamma-self.densityA
        #construct source terms
        source_rho = x_vec[0]-x_vec[0]
        source_e = (factorA/(self.gamma-1))*(rho_gamma_t + self.gamma*(u_x*rho**self.gamma+u*rho_gamma_x)+ \
                self.gamma*(v_y*rho**self.gamma+v*rho_gamma_y))
        source_rhou = factorA*rho_gamma_x
        source_rhov = factorA*rho_gamma_y

Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.tools import join_fields
        return join_fields(source_rho, source_e, source_rhou, source_rhov, x_vec[0]-x_vec[0])

    def volume_interpolant(self,t,q,discr):
        return discr.convert_volume(
                self(t,discr.nodes.T,q),
                kind=discr.compute_kind)


def main(write_output=True):
Andreas Klöckner's avatar
Andreas Klöckner committed
    from grudge.backends import guess_run_context
    rcon = guess_run_context(
                    #["cuda"]
                    )

    gamma = 1.4

    # at A=1 we have case of isentropic vortex, source terms
    # arise for other values
    densityA = 2.0

Andreas Klöckner's avatar
Andreas Klöckner committed
    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.mesh import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 1
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4,5]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=[#"cuda_no_plan",
                        #"print_op_code"
                        ],
                        default_scalar_type=numpy.float64)

Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        vortex = Vortex(beta=5, gamma=gamma,
                center=[5,0],
                velocity=[1,0], densityA=densityA)
        fields = vortex.volume_interpolant(0, discr)
        sources=SourceTerms(beta=5, gamma=gamma,
                center=[5,0],
                velocity=[1,0], densityA=densityA)

Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.models.gas_dynamics import (
                GasDynamicsOperator, GammaLawEOS)
        from grudge.mesh import BTAG_ALL

        op = GasDynamicsOperator(dimensions=2,
                mu=0.0, prandtl=0.72, spec_gas_const=287.1,
                equation_of_state=GammaLawEOS(vortex.gamma),
                bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
                inflow_tag=BTAG_ALL, source=sources)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
Andreas Klöckner's avatar
Andreas Klöckner committed
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        # limiter setup -------------------------------------------------------
Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)

        # time stepper --------------------------------------------------------
Andreas Klöckner's avatar
Andreas Klöckner committed
        from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        t = 0

        #fields = limiter(fields)

        try:
Andreas Klöckner's avatar
Andreas Klöckner committed
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=.1,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: 0.4*op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 1 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    true_fields = vortex.volume_interpolant(t, discr)

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                ("p", "0.4*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = vortex.volume_interpolant(t, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error_rho)
Andreas Klöckner's avatar
Andreas Klöckner committed
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

    # after order loop
    #assert eoc_rec.estimate_order_of_convergence()[0,1] > 6




if __name__ == "__main__":
    main()



# entry points for py.test ----------------------------------------------------
from pytools.test import mark_test
@mark_test.long
def test_euler_vortex():
    main(write_output=False)