Newer
Older
__copyright__ = "Copyright (C) 2008 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy
import numpy.linalg as la
# modifies isentropic vortex solution so that rho->Arho, P->A^gamma rho^gamma
# this will be analytic solution if appropriate source terms are added
# to the RHS. coded for vel_x=1, vel_y=0
class Vortex:
def __init__(self, beta, gamma, center, velocity, densityA):
self.beta = beta
self.gamma = gamma
self.center = numpy.asarray(center)
self.velocity = numpy.asarray(velocity)
self.densityA = densityA
def __call__(self, t, x_vec):
vortex_loc = self.center + t*self.velocity
# coordinates relative to vortex center
x_rel = x_vec[0] - vortex_loc[0]
y_rel = x_vec[1] - vortex_loc[1]
# Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159
# also JSH/TW Nodal DG Methods, p. 209
from math import pi
r = numpy.sqrt(x_rel**2+y_rel**2)
expterm = self.beta*numpy.exp(1-r**2)
u = self.velocity[0] - expterm*y_rel/(2*pi)
v = self.velocity[1] + expterm*x_rel/(2*pi)
rho = self.densityA*(1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1))
p = rho**self.gamma
e = p/(self.gamma-1) + rho/2*(u**2+v**2)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
return join_fields(rho, e, rho*u, rho*v)
def volume_interpolant(self, t, discr):
return discr.convert_volume(
self(t, discr.nodes.T
.astype(discr.default_scalar_type)),
kind=discr.compute_kind)
def boundary_interpolant(self, t, discr, tag):
return discr.convert_boundary(
self(t, discr.get_boundary(tag).nodes.T
.astype(discr.default_scalar_type)),
tag=tag, kind=discr.compute_kind)
class SourceTerms:
def __init__(self, beta, gamma, center, velocity, densityA):
self.beta = beta
self.gamma = gamma
self.center = numpy.asarray(center)
self.velocity = numpy.asarray(velocity)
self.densityA = densityA
def __call__(self,t,x_vec,q):
vortex_loc = self.center + t*self.velocity
# coordinates relative to vortex center
x_rel = x_vec[0] - vortex_loc[0]
y_rel = x_vec[1] - vortex_loc[1]
# sources written in terms of A=1.0 solution
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# (standard isentropic vortex)
from math import pi
r = numpy.sqrt(x_rel**2+y_rel**2)
expterm = self.beta*numpy.exp(1-r**2)
u = self.velocity[0] - expterm*y_rel/(2*pi)
v = self.velocity[1] + expterm*x_rel/(2*pi)
rho = (1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1))
p = rho**self.gamma
#computed necessary derivatives
expterm_t = 2*expterm*x_rel
expterm_x = -2*expterm*x_rel
expterm_y = -2*expterm*y_rel
u_x = -expterm*y_rel/(2*pi)*(-2*x_rel)
v_y = expterm*x_rel/(2*pi)*(-2*y_rel)
#derivatives for rho (A=1)
facG=self.gamma-1
rho_t = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
(-facG/(16*self.gamma*pi**2)*2*expterm*expterm_t)
rho_x = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
(-facG/(16*self.gamma*pi**2)*2*expterm*expterm_x)
rho_y = (1/facG)*(1-(facG)/(16*self.gamma*pi**2)*expterm**2)**(1/facG-1)* \
(-facG/(16*self.gamma*pi**2)*2*expterm*expterm_y)
#derivatives for rho (A=1) to the power of gamma
rho_gamma_t = self.gamma*rho**(self.gamma-1)*rho_t
rho_gamma_x = self.gamma*rho**(self.gamma-1)*rho_x
rho_gamma_y = self.gamma*rho**(self.gamma-1)*rho_y
factorA=self.densityA**self.gamma-self.densityA
#construct source terms
source_rho = x_vec[0]-x_vec[0]
source_e = (factorA/(self.gamma-1))*(rho_gamma_t + self.gamma*(u_x*rho**self.gamma+u*rho_gamma_x)+ \
self.gamma*(v_y*rho**self.gamma+v*rho_gamma_y))
source_rhou = factorA*rho_gamma_x
source_rhov = factorA*rho_gamma_y
return join_fields(source_rho, source_e, source_rhou, source_rhov, x_vec[0]-x_vec[0])
def volume_interpolant(self,t,q,discr):
return discr.convert_volume(
self(t,discr.nodes.T,q),
kind=discr.compute_kind)
def main(write_output=True):
rcon = guess_run_context(
#["cuda"]
)
gamma = 1.4
# at A=1 we have case of isentropic vortex, source terms
# arise for other values
densityA = 2.0
eoc_rec = EOCRecorder()
if rcon.is_head_rank:
make_rect_mesh, \
make_centered_regular_rect_mesh
refine = 1
mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
post_refine_factor=refine)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
for order in [4,5]:
discr = rcon.make_discretization(mesh_data, order=order,
debug=[#"cuda_no_plan",
#"print_op_code"
],
default_scalar_type=numpy.float64)
from grudge.visualization import SiloVisualizer, VtkVisualizer
#vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
vis = SiloVisualizer(discr, rcon)
vortex = Vortex(beta=5, gamma=gamma,
center=[5,0],
velocity=[1,0], densityA=densityA)
fields = vortex.volume_interpolant(0, discr)
sources=SourceTerms(beta=5, gamma=gamma,
center=[5,0],
velocity=[1,0], densityA=densityA)
GasDynamicsOperator, GammaLawEOS)
op = GasDynamicsOperator(dimensions=2,
mu=0.0, prandtl=0.72, spec_gas_const=287.1,
equation_of_state=GammaLawEOS(vortex.gamma),
bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
euler_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = euler_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements=", len(mesh.elements))
# limiter setup -------------------------------------------------------
from grudge.models.gas_dynamics import SlopeLimiter1NEuler
limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)
# time stepper --------------------------------------------------------
from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper
#stepper = SSPRK3TimeStepper(limiter=limiter)
#stepper = SSPRK3TimeStepper()
stepper = RK4TimeStepper()
# diagnostics setup ---------------------------------------------------
from logpyle import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
if write_output:
log_file_name = "euler-%d.dat" % order
else:
log_file_name = None
logmgr = LogManager(log_file_name, "w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
add_simulation_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# timestep loop -------------------------------------------------------
t = 0
#fields = limiter(fields)
try:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
step_it = times_and_steps(
final_time=.1,
#max_steps=500,
logmgr=logmgr,
max_dt_getter=lambda t: 0.4*op.estimate_timestep(discr,
stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))
for step, t, dt in step_it:
if step % 1 == 0 and write_output:
#if False:
visf = vis.make_file("vortex-%d-%04d" % (order, step))
true_fields = vortex.volume_interpolant(t, discr)
#rhs_fields = rhs(t, fields)
from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
#("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
#("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
#("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
#("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
#("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
#("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
#("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
],
expressions=[
#("diff_rho", "rho-true_rho"),
#("diff_e", "e-true_e"),
#("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
("p", "0.4*(e- 0.5*(rho_u*u))"),
],
time=t, step=step
)
visf.close()
fields = stepper(fields, t, dt, rhs)
true_fields = vortex.volume_interpolant(t, discr)
l2_error = discr.norm(fields-true_fields)
l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))
eoc_rec.add_data_point(order, l2_error_rho)
print()
print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
logmgr.set_constant("l2_error", l2_error)
logmgr.set_constant("l2_error_rho", l2_error_rho)
logmgr.set_constant("l2_error_e", l2_error_e)
logmgr.set_constant("l2_error_rhou", l2_error_rhou)
logmgr.set_constant("l2_error_u", l2_error_u)
logmgr.set_constant("refinement", refine)
finally:
if write_output:
vis.close()
logmgr.close()
discr.close()
# after order loop
#assert eoc_rec.estimate_order_of_convergence()[0,1] > 6
if __name__ == "__main__":
main()
# entry points for py.test ----------------------------------------------------
from pytools.test import mark_test
@mark_test.long
def test_euler_vortex():
main(write_output=False)