Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = """
Copyright (C) 2017 Ellis Hoag
Copyright (C) 2017 Andreas Kloeckner
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pytest
import os
import logging
logger = logging.getLogger(__name__)
from grudge import sym, bind, DGDiscretizationWithBoundaries
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from meshmode.distributed import MPIMeshDistributor
from mpi4py import MPI
comm = MPI.COMM_WORLD
num_parts = comm.Get_size()
mesh_dist = MPIMeshDistributor(comm)
if mesh_dist.is_mananger_rank():
from meshmode.mesh.generation import generate_regular_rect_mesh
from pymetis import part_graph
_, p = part_graph(num_parts,
xadj=mesh.nodal_adjacency.neighbors_starts.tolist(),
adjncy=mesh.nodal_adjacency.neighbors.tolist())
part_per_element = np.array(p)
local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
else:
local_mesh = mesh_dist.receive_mesh_part()
vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=5,
mpi_communicator=comm)
sym_x = sym.nodes(local_mesh.dim)
myfunc_symb = sym.sin(np.dot(sym_x, [2, 3]))
myfunc = bind(vol_discr, myfunc_symb)(queue)
sym_all_faces_func = sym.cse(
sym.interp("vol", "all_faces")(sym.var("myfunc")))
sym_int_faces_func = sym.cse(
sym.interp("vol", "int_faces")(sym.var("myfunc")))
sym_bdry_faces_func = sym.cse(
sym.interp(sym.BTAG_ALL, "all_faces")(
sym.interp("vol", sym.BTAG_ALL)(sym.var("myfunc"))))
bound_face_swap = bind(vol_discr,
sym.interp("int_faces", "all_faces")(
sym.OppositeInteriorFaceSwap("int_faces")(
sym_int_faces_func)
) - (sym_all_faces_func - sym_bdry_faces_func)
)
hopefully_zero = bound_face_swap(queue, myfunc=myfunc)
import numpy.linalg as la
error = la.norm(hopefully_zero.get())
np.set_printoptions(threshold=100000000, suppress=True)
print(hopefully_zero)
print(error)
assert error < 1e-14
from mpi4py import MPI
comm = MPI.COMM_WORLD
if mesh_dist.is_mananger_rank():
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
b=(0.5,)*dim,
n=(16,)*dim)
from pymetis import part_graph
_, p = part_graph(num_parts,
xadj=mesh.nodal_adjacency.neighbors_starts.tolist(),
adjncy=mesh.nodal_adjacency.neighbors.tolist())
part_per_element = np.array(p)
local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
else:
local_mesh = mesh_dist.receive_mesh_part()
vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=order,
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
source_width = 0.05
source_omega = 3
sym_x = sym.nodes(local_mesh.dim)
sym_source_center_dist = sym_x - source_center
sym_t = sym.ScalarVariable("t")
from grudge.models.wave import StrongWaveOperator
from meshmode.mesh import BTAG_ALL, BTAG_NONE
op = StrongWaveOperator(-0.1, vol_discr.dim,
source_f=(
sym.sin(source_omega*sym_t)
* sym.exp(
-np.dot(sym_source_center_dist, sym_source_center_dist)
/ source_width**2)),
dirichlet_tag=BTAG_NONE,
neumann_tag=BTAG_NONE,
radiation_tag=BTAG_ALL,
flux_type="upwind")
from pytools.obj_array import join_fields
fields = join_fields(vol_discr.zeros(queue),
[vol_discr.zeros(queue) for i in range(vol_discr.dim)])
# FIXME
# FIXME: Should meshmode consider BTAG_PARTITION to be a boundary?
# Fails because: "found faces without boundary conditions"
# op.check_bc_coverage(local_mesh)
from pytools.log import LogManager, \
add_general_quantities, \
# NOTE: LogManager hangs when using a file on a shared directory.
logmgr = LogManager(log_filename, "w", comm)
add_run_info(logmgr)
add_general_quantities(logmgr)
{"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
"Time spent evaluating RankDataSwapAssign"),
"rank_data_swap_counter": EventCounter("rank_data_swap_counter",
"Number of RankDataSwapAssign instructions evaluated"),
"exec_timer": IntervalTimer("exec_timer",
"Total time spent executing instructions"),
"insn_eval_timer": IntervalTimer("insn_eval_timer",
"Time spend evaluating instructions"),
"future_eval_timer": IntervalTimer("future_eval_timer",
"Time spent evaluating futures"),
"busy_wait_timer": IntervalTimer("busy_wait_timer",
"Time wasted doing busy wait")}
for quantity in log_quantities.values():
logmgr.add_quantity(quantity)
# print(sym.pretty(op.sym_operator()))
bound_op = bind(vol_discr, op.sym_operator())
# print(bound_op)
# 1/0
def rhs(t, w):
val, rhs.profile_data = bound_op(queue, profile_data=rhs.profile_data,
return val
rhs.profile_data = {}
print("rank=%d dt=%g nsteps=%d" % (i_local_rank, dt, nsteps))
# from grudge.shortcuts import make_visualizer
# vis = make_visualizer(vol_discr, vis_order=order)
step = 0
norm = bind(vol_discr, sym.norm(2, sym.var("u")))
from time import time
t_last_step = time()
for event in dt_stepper.run(t_end=final_t):
if isinstance(event, dt_stepper.StateComputed):
assert event.component_id == "w"
print(step, event.t, norm(queue, u=event.state_component[0]),
time()-t_last_step)
# if step % 10 == 0:
# vis.write_vtk_file("rank%d-fld-%04d.vtu" % (i_local_rank, step),
# [("u", event.state_component[0]),
# ("v", event.state_component[1:])])
def print_profile_data(data):
print("""execute() for rank %d:
\tInstruction Evaluation: %f%%
\tFuture Evaluation: %f%%
\tBusy Wait: %f%%
\tTotal: %f seconds""" %
(i_local_rank,
data['insn_eval_time'] / data['total_time'] * 100,
data['future_eval_time'] / data['total_time'] * 100,
data['busy_wait_time'] / data['total_time'] * 100,
data['total_time']))
print_profile_data(rhs.profile_data)
logger.debug("Rank %d exiting", i_local_rank)
# @pytest.mark.mpi
# @pytest.mark.parametrize("num_ranks", [3])
pytest.importorskip("mpi4py")
from subprocess import check_call
import sys
newenv = os.environ.copy()
newenv["RUN_WITHIN_MPI"] = "1"
newenv["TEST_MPI_COMMUNICATION"] = "1"
check_call([
"mpiexec", "-np", str(num_ranks), "-x", "RUN_WITHIN_MPI",
sys.executable, __file__],
env=newenv)
pytest.importorskip("mpi4py")
from subprocess import check_call
import sys
newenv = os.environ.copy()
newenv["RUN_WITHIN_MPI"] = "1"
check_call([
"mpiexec", "-np", str(num_ranks), "-x", "RUN_WITHIN_MPI",
sys.executable, __file__],
env=newenv)
# }}}
if "RUN_WITHIN_MPI" in os.environ:
if "TEST_MPI_COMMUNICATION" in os.environ:
mpi_communication_entrypoint()