Skip to content
Snippets Groups Projects
acoustic_pulse.py 7.36 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = """
    Copyright (C) 2021 University of Illinois Board of Trustees
    """
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    
    import logging
    
    
    import numpy as np
    
    import pyopencl as cl
    import pyopencl.tools as cl_tools
    from meshmode.mesh import BTAG_ALL
    from pytools.obj_array import make_obj_array
    
    import grudge.op as op
    
    from grudge.array_context import PyOpenCLArrayContext, PytatoPyOpenCLArrayContext
    from grudge.models.euler import ConservedEulerField, EulerOperator, InviscidWallBC
    from grudge.shortcuts import rk4_step
    
    
    
    logger = logging.getLogger(__name__)
    
    
    def gaussian_profile(
            x_vec, t=0, rho0=1.0, rhoamp=1.0, p0=1.0, gamma=1.4,
            center=None, velocity=None):
    
        dim = len(x_vec)
        if center is None:
            center = np.zeros(shape=(dim,))
        if velocity is None:
            velocity = np.zeros(shape=(dim,))
    
        lump_loc = center + t * velocity
    
        # coordinates relative to lump center
        rel_center = make_obj_array(
            [x_vec[i] - lump_loc[i] for i in range(dim)]
        )
        actx = x_vec[0].array_context
        r = actx.np.sqrt(np.dot(rel_center, rel_center))
        expterm = rhoamp * actx.np.exp(1 - r ** 2)
    
        mass = expterm + rho0
        mom = velocity * mass
        energy = (p0 / (gamma - 1.0)) + np.dot(mom, mom) / (2.0 * mass)
    
        return ConservedEulerField(mass=mass, energy=energy, momentum=mom)
    
    
    def make_pulse(amplitude, r0, w, r):
        dim = len(r)
        r_0 = np.zeros(dim)
        r_0 = r_0 + r0
        rel_center = make_obj_array(
            [r[i] - r_0[i] for i in range(dim)]
        )
        actx = r[0].array_context
        rms2 = w * w
        r2 = np.dot(rel_center, rel_center) / rms2
        return amplitude * actx.np.exp(-.5 * r2)
    
    
    def acoustic_pulse_condition(x_vec, t=0):
        dim = len(x_vec)
        vel = np.zeros(shape=(dim,))
        orig = np.zeros(shape=(dim,))
        uniform_gaussian = gaussian_profile(
            x_vec, t=t, center=orig, velocity=vel, rhoamp=0.0)
    
        amplitude = 1.0
        width = 0.1
        pulse = make_pulse(amplitude, orig, width, x_vec)
    
        return ConservedEulerField(
            mass=uniform_gaussian.mass,
            energy=uniform_gaussian.energy + pulse,
            momentum=uniform_gaussian.momentum
        )
    
    
    def run_acoustic_pulse(actx,
                           order=3,
                           final_time=1,
                           resolution=16,
                           overintegration=False,
                           visualize=False):
    
        # eos-related parameters
        gamma = 1.4
    
        # {{{ discretization
    
        from meshmode.mesh.generation import generate_regular_rect_mesh
    
        dim = 2
        box_ll = -0.5
        box_ur = 0.5
        mesh = generate_regular_rect_mesh(
            a=(box_ll,)*dim,
            b=(box_ur,)*dim,
            nelements_per_axis=(resolution,)*dim)
    
    
        from meshmode.discretization.poly_element import (
            QuadratureSimplexGroupFactory,
            default_simplex_group_factory,
        )
    
    
        from grudge.discretization import make_discretization_collection
    
        from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
    
        exp_name = f"fld-acoustic-pulse-N{order}-K{resolution}"
        if overintegration:
            exp_name += "-overintegrated"
            quad_tag = DISCR_TAG_QUAD
        else:
            quad_tag = None
    
    
        dcoll = make_discretization_collection(
    
            actx, mesh,
            discr_tag_to_group_factory={
                DISCR_TAG_BASE: default_simplex_group_factory(
                    base_dim=mesh.dim, order=order),
                DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order)
            }
        )
    
        # }}}
    
        # {{{ Euler operator
    
        euler_operator = EulerOperator(
            dcoll,
            bdry_conditions={BTAG_ALL: InviscidWallBC()},
            flux_type="lf",
            gamma=gamma,
            quadrature_tag=quad_tag
        )
    
        def rhs(t, q):
            return euler_operator.operator(t, q)
    
        compiled_rhs = actx.compile(rhs)
    
        from grudge.dt_utils import h_min_from_volume
    
        cfl = 0.125
        cn = 0.5*(order + 1)**2
        dt = cfl * actx.to_numpy(h_min_from_volume(dcoll)) / cn
    
    
        fields = acoustic_pulse_condition(actx.thaw(dcoll.nodes()))
    
    
        logger.info("Timestep size: %g", dt)
    
        # }}}
    
        from grudge.shortcuts import make_visualizer
    
        vis = make_visualizer(dcoll)
    
        # {{{ time stepping
    
        step = 0
        t = 0.0
        while t < final_time:
            if step % 10 == 0:
                norm_q = actx.to_numpy(op.norm(dcoll, fields, 2))
                logger.info("[%04d] t = %.5f |q| = %.5e", step, t, norm_q)
                if visualize:
                    vis.write_vtk_file(
                        f"{exp_name}-{step:04d}.vtu",
                        [
                            ("rho", fields.mass),
                            ("energy", fields.energy),
                            ("momentum", fields.momentum)
                        ]
                    )
                assert norm_q < 5
    
    
            fields = actx.thaw(actx.freeze(fields))
    
            fields = rk4_step(fields, t, dt, compiled_rhs)
            t += dt
            step += 1
    
        # }}}
    
    
    def main(ctx_factory, order=3, final_time=1, resolution=16,
             overintegration=False, visualize=False, lazy=False):
        cl_ctx = ctx_factory()
        queue = cl.CommandQueue(cl_ctx)
    
        if lazy:
            actx = PytatoPyOpenCLArrayContext(
                queue,
                allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
            )
        else:
            actx = PyOpenCLArrayContext(
                queue,
                allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
                force_device_scalars=True,
            )
    
        run_acoustic_pulse(
            actx,
            order=order,
            resolution=resolution,
            overintegration=overintegration,
            final_time=final_time,
            visualize=visualize
        )
    
    
    if __name__ == "__main__":
        import argparse
    
        parser = argparse.ArgumentParser()
        parser.add_argument("--order", default=3, type=int)
        parser.add_argument("--tfinal", default=0.1, type=float)
        parser.add_argument("--resolution", default=16, type=int)
        parser.add_argument("--oi", action="store_true",
                            help="use overintegration")
        parser.add_argument("--visualize", action="store_true",
                            help="write out vtk output")
        parser.add_argument("--lazy", action="store_true",
                            help="switch to a lazy computation mode")
        args = parser.parse_args()
    
        logging.basicConfig(level=logging.INFO)
        main(cl.create_some_context,
             order=args.order,
             final_time=args.tfinal,
             resolution=args.resolution,
             overintegration=args.oi,
             visualize=args.visualize,
             lazy=args.lazy)