Newer
Older
# Copyright (C) 2007 Andreas Kloeckner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import pyopencl as cl # noqa
import pyopencl.array # noqa
import pyopencl.clmath # noqa
import pytest # noqa
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
import logging
logger = logging.getLogger(__name__)
Andreas Klöckner
committed
from grudge import sym, bind, DGDiscretizationWithBoundaries
import numpy.linalg as la
def main(write_output=True, order=4):
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
dim = 2
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5),
n=(20, 20), order=order)
dt_factor = 4
h = 1/20
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
c = np.array([0.1,0.1])
norm_c = la.norm(c)
flux_type = "central"
def f(x):
return sym.sin(3*x)
def u_analytic(x):
return f(-np.dot(c, x)/norm_c+sym.var("t", sym.DD_SCALAR)*norm_c)
from grudge.models.advection import WeakAdvectionOperator
from meshmode.mesh import BTAG_ALL, BTAG_NONE
Andreas Klöckner
committed
discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
op = WeakAdvectionOperator(c,
inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)),
flux_type=flux_type)
bound_op = bind(discr, op.sym_operator())
u = bind(discr, u_analytic(sym.nodes(dim)))(queue, t=0)
def rhs(t, u):
return bound_op(queue, t=t, u=u)
final_time = 0.3
dt = dt_factor * h/order**2
nsteps = (final_time // dt) + 1
dt = final_time/nsteps + 1e-15
from grudge.shortcuts import set_up_rk4
dt_stepper = set_up_rk4("u", dt, u, rhs)
last_u = None
from grudge.shortcuts import make_visualizer
vis = make_visualizer(discr, vis_order=order)
step = 0
norm = bind(discr, sym.norm(2, sym.var("u")))
for event in dt_stepper.run(t_end=final_time):
if isinstance(event, dt_stepper.StateComputed):
step += 1
#print(step, event.t, norm(queue, u=event.state_component[0]))