Skip to content
Snippets Groups Projects
wiggly.py 6.08 KiB
Newer Older
  • Learn to ignore specific revisions
  • """Wiggly geometry wave propagation."""
    
    from __future__ import division
    
    __copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    import numpy as np
    from hedge.mesh import TAG_ALL, TAG_NONE  # noqa
    
    
    def main(write_output=True,
            flux_type_arg="upwind", dtype=np.float64, debug=[]):
        from math import sin, cos, pi, exp, sqrt  # noqa
    
        from hedge.backends import guess_run_context
        rcon = guess_run_context()
    
        if rcon.is_head_rank:
            from hedge.mesh.reader.gmsh import generate_gmsh
            mesh = generate_gmsh(GEOMETRY, 2,
                    allow_internal_boundaries=True,
                    force_dimension=2)
    
            print "%d elements" % len(mesh.elements)
            mesh_data = rcon.distribute_mesh(mesh)
        else:
            mesh_data = rcon.receive_mesh()
    
        discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
                default_scalar_type=dtype)
        from hedge.timestep.runge_kutta import LSRK4TimeStepper
        stepper = LSRK4TimeStepper(dtype=dtype)
    
        from hedge.visualization import VtkVisualizer
        if write_output:
            vis = VtkVisualizer(discr, rcon, "fld")
    
        source_center = 0
        source_width = 0.05
        source_omega = 3
    
        import hedge.optemplate as sym
        sym_x = sym.nodes(2)
        sym_source_center_dist = sym_x - source_center
    
        from hedge.models.wave import StrongWaveOperator
        op = StrongWaveOperator(-1, discr.dimensions,
                source_f=
                sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
                * sym.CFunction("exp")(
                    -np.dot(sym_source_center_dist, sym_source_center_dist)
                    / source_width**2),
                dirichlet_tag="boundary",
                neumann_tag=TAG_NONE,
                radiation_tag=TAG_NONE,
                flux_type=flux_type_arg
                )
    
        from hedge.tools import join_fields
        fields = join_fields(discr.volume_zeros(dtype=dtype),
                [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])
    
        # diagnostics setup -------------------------------------------------------
        from pytools.log import LogManager, \
                add_general_quantities, \
                add_simulation_quantities, \
                add_run_info
    
        if write_output:
            log_file_name = "wiggly.dat"
        else:
            log_file_name = None
    
        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
    
        stepper.add_instrumentation(logmgr)
    
        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
    
        # timestep loop -----------------------------------------------------------
        rhs = op.bind(discr)
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=4, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, fields=fields))
    
            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                    visf = vis.make_file("fld-%04d" % step)
    
                    vis.add_data(visf,
                            [
                                ("u", fields[0]),
                                ("v", fields[1:]),
                            ],
                            time=t,
                            step=step)
                    visf.close()
    
                fields = stepper(fields, t, dt, rhs)
    
            assert discr.norm(fields) < 1
            assert fields[0].dtype == dtype
    
        finally:
            if write_output:
                vis.close()
    
            logmgr.close()
            discr.close()
    
    GEOMETRY = """
    w = 1;
    dx = 0.2;
    ch_width = 0.2;
    rows = 4;
    
    Point(0) = {0,0,0};
    Point(1) = {w,0,0};
    
    bottom_line = newl;
    Line(bottom_line) = {0,1};
    
    left_pts[] = { 0 };
    right_pts[] = { 1 };
    
    left_pts[] = { };
    emb_lines[] = {};
    
    For row In {1:rows}
      If (row % 2 == 0)
        // left
        rp = newp; Point(rp) = {w,dx*row, 0};
        right_pts[] += {rp};
    
        mp = newp; Point(mp) = {ch_width,dx*row, 0};
        emb_line = newl; Line(emb_line) = {mp,rp};
        emb_lines[] += {emb_line};
      EndIf
      If (row % 2)
        // right
        lp = newp; Point(lp) = {0,dx*row, 0};
        left_pts[] += {lp};
    
        mp = newp; Point(mp) = { w-ch_width,dx*row, 0};
        emb_line = newl; Line(emb_line) = {mp,lp};
        emb_lines[] += {emb_line};
      EndIf
    EndFor
    
    lep = newp; Point(lep) = {0,(rows+1)*dx,0};
    rep = newp; Point(rep) = {w,(rows+1)*dx,0};
    top_line = newl; Line(top_line) = {lep,rep};
    
    left_pts[] += { lep };
    right_pts[] += { rep };
    
    lines[] = {bottom_line};
    
    For i In {0:#right_pts[]-2}
      l = newl; Line(l) = {right_pts[i], right_pts[i+1]};
      lines[] += {l};
    EndFor
    
    lines[] += {-top_line};
    
    For i In {#left_pts[]-1:0:-1}
      l = newl; Line(l) = {left_pts[i], left_pts[i-1]};
      lines[] += {l};
    EndFor
    
    Line Loop (1) = lines[];
    
    Plane Surface (1) = {1};
    Physical Surface(1) = {1};
    
    For i In {0:#emb_lines[]-1}
      Line { emb_lines[i] } In Surface { 1 };
    EndFor
    
    boundary_lines[] = {};
    boundary_lines[] += lines[];
    boundary_lines[] += emb_lines[];
    Physical Line ("boundary") = boundary_lines[];
    
    Mesh.CharacteristicLengthFactor = 0.4;
    """
    
    if __name__ == "__main__":
        main()