Newer
Older
# Copyright (C) 2008 Andreas Kloeckner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import numpy
import numpy.linalg as la
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def make_squaremesh():
def round_trip_connect(seq):
result = []
for i in range(len(seq)):
result.append((i, (i+1)%len(seq)))
return result
def needs_refinement(vertices, area):
x = sum(numpy.array(v) for v in vertices)/3
max_area_volume = 0.7e-2 + 0.03*(0.05*x[1]**2 + 0.3*min(x[0]+1,0)**2)
max_area_corners = 1e-3 + 0.001*max(
la.norm(x-corner)**4 for corner in obstacle_corners)
return bool(area > 2.5*min(max_area_volume, max_area_corners))
from meshpy.geometry import make_box
points, facets, _, _ = make_box((-0.5,-0.5), (0.5,0.5))
obstacle_corners = points[:]
from meshpy.geometry import GeometryBuilder, Marker
profile_marker = Marker.FIRST_USER_MARKER
builder = GeometryBuilder()
builder.add_geometry(points=points, facets=facets,
facet_markers=profile_marker)
points, facets, _, facet_markers = make_box((-16, -22), (25, 22))
builder.add_geometry(points=points, facets=facets,
facet_markers=facet_markers)
from meshpy.triangle import MeshInfo, build
mi = MeshInfo()
builder.set(mi)
mi.set_holes([(0,0)])
mesh = build(mi, refinement_func=needs_refinement,
allow_boundary_steiner=True,
generate_faces=True)
from meshpy.triangle import write_gnuplot_mesh
write_gnuplot_mesh("mesh.dat", mesh)
fvi2fm = mesh.face_vertex_indices_to_face_marker
face_marker_to_tag = {
profile_marker: "noslip",
Marker.MINUS_X: "inflow",
Marker.PLUS_X: "outflow",
Marker.MINUS_Y: "inflow",
Marker.PLUS_Y: "inflow"
}
def bdry_tagger(fvi, el, fn, all_v):
face_marker = fvi2fm[fvi]
return [face_marker_to_tag[face_marker]]
vertices = numpy.asarray(mesh.points, dtype=float, order="C")
return make_conformal_mesh_ext(
vertices,
[Triangle(i, el_idx, vertices)
for i, el_idx in enumerate(mesh.elements)],
bdry_tagger)
def main():
import logging
logging.basicConfig(level=logging.INFO)
rcon = guess_run_context()
if rcon.is_head_rank:
if True:
mesh = make_squaremesh()
else:
mesh = make_rect_mesh(
boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"],
max_area=0.1)
mesh_data = rcon.distribute_mesh(mesh)
else:
mesh_data = rcon.receive_mesh()
from pytools import add_python_path_relative_to_script
add_python_path_relative_to_script(".")
for order in [3]:
from gas_dynamics_initials import UniformMachFlow
square = UniformMachFlow(gaussian_pulse_at=numpy.array([-2, 2]),
pulse_magnitude=0.003)
GasDynamicsOperator,
GammaLawEOS)
op = GasDynamicsOperator(dimensions=2,
equation_of_state=GammaLawEOS(square.gamma), mu=square.mu,
prandtl=square.prandtl, spec_gas_const=square.spec_gas_const,
bc_inflow=square, bc_outflow=square, bc_noslip=square,
inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")
discr = rcon.make_discretization(mesh_data, order=order,
debug=["cuda_no_plan",
"cuda_dump_kernels",
#"dump_dataflow_graph",
#"dump_optemplate_stages",
#"dump_dataflow_graph",
#"dump_op_code"
#"cuda_no_plan_el_local"
],
default_scalar_type=numpy.float64,
quad_min_degrees={
"gasdyn_vol": 3*order,
"gasdyn_face": 3*order,
}
)
from grudge.visualization import SiloVisualizer, VtkVisualizer
#vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
vis = SiloVisualizer(discr, rcon)
LSRK4TimeStepper, ODE23TimeStepper, ODE45TimeStepper)
#stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type,
#vector_primitive_factory=discr.get_vector_primitive_factory())
stepper = ODE23TimeStepper(dtype=discr.default_scalar_type,
rtol=1e-6,
vector_primitive_factory=discr.get_vector_primitive_factory())
# Dumka works kind of poorly
#stepper = Dumka3TimeStepper(dtype=discr.default_scalar_type,
#rtol=1e-7, pol_index=2,
#vector_primitive_factory=discr.get_vector_primitive_factory())
#from grudge.timestep.dumka3 import Dumka3TimeStepper
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#stepper = Dumka3TimeStepper(3, rtol=1e-7)
# diagnostics setup ---------------------------------------------------
from pytools.log import LogManager, add_general_quantities, \
add_simulation_quantities, add_run_info
logmgr = LogManager("cns-square-sp-%d.dat" % order, "w", rcon.communicator)
add_run_info(logmgr)
add_general_quantities(logmgr)
discr.add_instrumentation(logmgr)
stepper.add_instrumentation(logmgr)
from pytools.log import LogQuantity
class ChangeSinceLastStep(LogQuantity):
"""Records the change of a variable between a time step and the previous
one"""
def __init__(self, name="change"):
LogQuantity.__init__(self, name, "1", "Change since last time step")
self.old_fields = 0
def __call__(self):
result = discr.norm(fields - self.old_fields)
self.old_fields = fields
return result
#logmgr.add_quantity(ChangeSinceLastStep())
add_simulation_quantities(logmgr)
logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
# filter setup ------------------------------------------------------------
from grudge.discretization import Filter, ExponentialFilterResponseFunction
mode_filter = Filter(discr,
ExponentialFilterResponseFunction(min_amplification=0.95, order=6))
# timestep loop -------------------------------------------------------
fields = square.volume_interpolant(0, discr)
navierstokes_ex = op.bind(discr)
max_eigval = [0]
def rhs(t, q):
ode_rhs, speed = navierstokes_ex(t, q)
max_eigval[0] = speed
return ode_rhs
rhs(0, fields)
if rcon.is_head_rank:
print("---------------------------------------------")
print("order %d" % order)
print("---------------------------------------------")
print("#elements=", len(mesh.elements))
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
step_it = times_and_steps(
final_time=1000,
#max_steps=500,
logmgr=logmgr,
max_dt_getter=lambda t: next_dt,
taken_dt_getter=lambda: taken_dt)
model_stepper = LSRK4TimeStepper()
next_dt = op.estimate_timestep(discr,
stepper=model_stepper, t=0,
max_eigenvalue=max_eigval[0])
for step, t, dt in step_it:
#if (step % 10000 == 0): #and step < 950000) or (step % 500 == 0 and step > 950000):
#if False:
if step % 5 == 0:
visf = vis.make_file("square-%d-%06d" % (order, step))
#from pyvisfile.silo import DB_VARTYPE_VECTOR
vis.add_data(visf,
[
("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
("e", discr.convert_volume(op.e(fields), kind="numpy")),
("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
("u", discr.convert_volume(op.u(fields), kind="numpy")),
],
expressions=[
("p", "(0.4)*(e- 0.5*(rho_u*u))"),
],
time=t, step=step
)
visf.close()
if stepper.adaptive:
fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
else:
taken_dt = dt
fields = stepper(fields, t, dt, rhs)
dt = op.estimate_timestep(discr,
stepper=model_stepper, t=0,
max_eigenvalue=max_eigval[0])
#fields = mode_filter(fields)
finally:
vis.close()
logmgr.save()
discr.close()
if __name__ == "__main__":
main()