Skip to content
Snippets Groups Projects
test_reductions.py 10.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • __copyright__ = """
    Copyright (C) 2021 University of Illinois Board of Trustees
    """
    
    __license__ = """
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
    import logging
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
    import mesh_data
    
    import numpy as np
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
    import pytest
    
    from arraycontext import (
        dataclass_array_container,
    
        pytest_generate_tests_for_array_contexts,
        with_container_arithmetic,
    
    from meshmode.dof_array import DOFArray
    
    from pytools.obj_array import make_obj_array
    
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
    from grudge import op
    from grudge.array_context import PytestPyOpenCLArrayContextFactory
    
    from grudge.discretization import make_discretization_collection
    
    
    
    logger = logging.getLogger(__name__)
    
    Alexandru Fikl's avatar
    Alexandru Fikl committed
    pytest_generate_tests = pytest_generate_tests_for_array_contexts(
            [PytestPyOpenCLArrayContextFactory])
    
    @pytest.mark.parametrize(("mesh_size", "with_initial"), [
        (4, False),
        (4, True),
        (0, False),
        (0, True)
    ])
    def test_nodal_reductions(actx_factory, mesh_size, with_initial):
    
        actx = actx_factory()
    
    
        builder = mesh_data.BoxMeshBuilder1D()
    
        mesh = builder.get_mesh(mesh_size)
    
        dcoll = make_discretization_collection(actx, mesh, order=4)
    
        x = actx.thaw(dcoll.nodes())
    
    
        def f(x):
            return -actx.np.sin(10*x[0])
    
        def g(x):
            return actx.np.cos(2*x[0])
    
        def h(x):
            return -actx.np.tan(5*x[0])
    
        fields = make_obj_array([f(x), g(x), h(x)])
    
    
        f_ref = actx.to_numpy(flatten(fields[0], actx))
        g_ref = actx.to_numpy(flatten(fields[1], actx))
        h_ref = actx.to_numpy(flatten(fields[2], actx))
    
        concat_fields = np.concatenate([f_ref, g_ref, h_ref])
    
    
        for grudge_op, np_op in [(op.nodal_max, np.max),
                                 (op.nodal_min, np.min),
                                 (op.nodal_sum, np.sum)]:
            extra_kwargs = {}
            if with_initial:
                if grudge_op is op.nodal_max:
                    extra_kwargs["initial"] = -100.
                elif grudge_op is op.nodal_min:
                    extra_kwargs["initial"] = 100.
    
            # nodal_min/nodal_max have default initial values, so they behave
            # differently from numpy in the empty case
            extra_np_only_kwargs = {}
            if mesh_size == 0 and not with_initial:
                if grudge_op is op.nodal_max:
                    extra_np_only_kwargs["initial"] = -np.inf
                elif grudge_op is op.nodal_min:
                    extra_np_only_kwargs["initial"] = np.inf
    
            # Componentwise reduction checks
    
            assert np.isclose(
                actx.to_numpy(grudge_op(dcoll, "vol", fields[0], **extra_kwargs)),
                np_op(f_ref, **extra_kwargs, **extra_np_only_kwargs),
                rtol=1e-13)
            assert np.isclose(
                actx.to_numpy(grudge_op(dcoll, "vol", fields[1], **extra_kwargs)),
                np_op(g_ref, **extra_kwargs, **extra_np_only_kwargs),
                rtol=1e-13)
            assert np.isclose(
                actx.to_numpy(grudge_op(dcoll, "vol", fields[2], **extra_kwargs)),
                np_op(h_ref, **extra_kwargs, **extra_np_only_kwargs),
                rtol=1e-13)
    
    
            # Test nodal reductions work on object arrays
    
            assert np.isclose(
                actx.to_numpy(grudge_op(dcoll, "vol", fields, **extra_kwargs)),
                np_op(concat_fields, **extra_kwargs, **extra_np_only_kwargs),
                rtol=1e-13)
    
    
    
    def test_elementwise_reductions(actx_factory):
        actx = actx_factory()
    
    
        builder = mesh_data.BoxMeshBuilder1D()
    
        mesh = builder.get_mesh(nelements)
    
        dcoll = make_discretization_collection(actx, mesh, order=4)
    
        x = actx.thaw(dcoll.nodes())
    
    
        def f(x):
            return actx.np.sin(x[0])
    
        field = f(x)
        mins = []
        maxs = []
        sums = []
    
            min_res = np.empty(grp_f.shape)
            max_res = np.empty(grp_f.shape)
            sum_res = np.empty(grp_f.shape)
    
            for eidx in range(mesh.nelements):
    
                element_data = actx.to_numpy(grp_f[eidx])
                min_res[eidx, :] = np.min(element_data)
                max_res[eidx, :] = np.max(element_data)
                sum_res[eidx, :] = np.sum(element_data)
            mins.append(actx.from_numpy(min_res))
            maxs.append(actx.from_numpy(max_res))
            sums.append(actx.from_numpy(sum_res))
    
        ref_mins = DOFArray(actx, data=tuple(mins))
        ref_maxs = DOFArray(actx, data=tuple(maxs))
        ref_sums = DOFArray(actx, data=tuple(sums))
    
        elem_mins = op.elementwise_min(dcoll, field)
        elem_maxs = op.elementwise_max(dcoll, field)
        elem_sums = op.elementwise_sum(dcoll, field)
    
    
        assert actx.to_numpy(op.norm(dcoll, elem_mins - ref_mins, np.inf)) < 1.e-15
        assert actx.to_numpy(op.norm(dcoll, elem_maxs - ref_maxs, np.inf)) < 1.e-15
        assert actx.to_numpy(op.norm(dcoll, elem_sums - ref_sums, np.inf)) < 1.e-15
    
    
    # {{{ Array container tests
    
    @with_container_arithmetic(bcast_obj_array=False,
    
    Matthias Diener's avatar
    Matthias Diener committed
            eq_comparison=False, rel_comparison=False,
            _cls_has_array_context_attr=True)
    
    @dataclass_array_container
    @dataclass(frozen=True)
    class MyContainer:
        name: str
        mass: DOFArray
        momentum: np.ndarray
        enthalpy: DOFArray
    
        @property
        def array_context(self):
            return self.mass.array_context
    
    
    def test_nodal_reductions_with_container(actx_factory):
        actx = actx_factory()
    
    
        builder = mesh_data.BoxMeshBuilder2D()
    
        mesh = builder.get_mesh(4)
    
        dcoll = make_discretization_collection(actx, mesh, order=4)
    
        x = actx.thaw(dcoll.nodes())
    
    
        def f(x):
            return -actx.np.sin(10*x[0]) * actx.np.cos(2*x[1])
    
        def g(x):
            return actx.np.cos(2*x[0]) * actx.np.sin(10*x[1])
    
        def h(x):
            return -actx.np.tan(5*x[0]) * actx.np.tan(0.5*x[1])
    
        mass = f(x) + g(x)
        momentum = make_obj_array([f(x)/g(x), h(x)])
        enthalpy = h(x) - g(x)
    
        ary_container = MyContainer(name="container",
                                    mass=mass,
                                    momentum=momentum,
                                    enthalpy=enthalpy)
    
    
        mass_ref = actx.to_numpy(flatten(mass, actx))
        momentum_ref = np.concatenate([
                actx.to_numpy(mom_i)
                for mom_i in flatten(momentum, actx, leaf_class=DOFArray)])
        enthalpy_ref = actx.to_numpy(flatten(enthalpy, actx))
    
        concat_fields = np.concatenate([mass_ref, momentum_ref, enthalpy_ref])
    
        for grudge_op, np_op in [(op.nodal_sum, np.sum),
                                 (op.nodal_max, np.max),
                                 (op.nodal_min, np.min)]:
    
            assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", ary_container)),
                              np_op(concat_fields), rtol=1e-13)
    
        # Check norm reduction
        assert np.isclose(actx.to_numpy(op.norm(dcoll, ary_container, np.inf)),
                          np.linalg.norm(concat_fields, ord=np.inf),
                          rtol=1e-13)
    
    
    def test_elementwise_reductions_with_container(actx_factory):
        actx = actx_factory()
    
    
        builder = mesh_data.BoxMeshBuilder2D()
    
        mesh = builder.get_mesh(nelements)
    
        dcoll = make_discretization_collection(actx, mesh, order=4)
    
        x = actx.thaw(dcoll.nodes())
    
    
        def f(x):
            return actx.np.sin(x[0]) * actx.np.sin(x[1])
    
        def g(x):
            return actx.np.cos(x[0]) * actx.np.cos(x[1])
    
        def h(x):
            return actx.np.cos(x[0]) * actx.np.sin(x[1])
    
        mass = 2*f(x) + 0.5*g(x)
        momentum = make_obj_array([f(x)/g(x), h(x)])
        enthalpy = 3*h(x) - g(x)
    
        ary_container = MyContainer(name="container",
                                    mass=mass,
                                    momentum=momentum,
                                    enthalpy=enthalpy)
    
        def _get_ref_data(field):
            mins = []
            maxs = []
            sums = []
            for grp_f in field:
                min_res = np.empty(grp_f.shape)
                max_res = np.empty(grp_f.shape)
                sum_res = np.empty(grp_f.shape)
    
                for eidx in range(mesh.nelements):
    
                    element_data = actx.to_numpy(grp_f[eidx])
                    min_res[eidx, :] = np.min(element_data)
                    max_res[eidx, :] = np.max(element_data)
                    sum_res[eidx, :] = np.sum(element_data)
                mins.append(actx.from_numpy(min_res))
                maxs.append(actx.from_numpy(max_res))
                sums.append(actx.from_numpy(sum_res))
            min_field = DOFArray(actx, data=tuple(mins))
            max_field = DOFArray(actx, data=tuple(maxs))
            sums_field = DOFArray(actx, data=tuple(sums))
            return min_field, max_field, sums_field
    
        min_mass, max_mass, sums_mass = _get_ref_data(mass)
        min_enthalpy, max_enthalpy, sums_enthalpy = _get_ref_data(enthalpy)
        min_mom_x, max_mom_x, sums_mom_x = _get_ref_data(momentum[0])
        min_mom_y, max_mom_y, sums_mom_y = _get_ref_data(momentum[1])
        min_momentum = make_obj_array([min_mom_x, min_mom_y])
        max_momentum = make_obj_array([max_mom_x, max_mom_y])
        sums_momentum = make_obj_array([sums_mom_x, sums_mom_y])
    
        reference_min = MyContainer(
            name="Reference min",
            mass=min_mass,
            momentum=min_momentum,
            enthalpy=min_enthalpy
        )
    
        reference_max = MyContainer(
            name="Reference max",
            mass=max_mass,
            momentum=max_momentum,
            enthalpy=max_enthalpy
        )
    
        reference_sum = MyContainer(
            name="Reference sums",
            mass=sums_mass,
            momentum=sums_momentum,
            enthalpy=sums_enthalpy
        )
    
        elem_mins = op.elementwise_min(dcoll, ary_container)
        elem_maxs = op.elementwise_max(dcoll, ary_container)
        elem_sums = op.elementwise_sum(dcoll, ary_container)
    
        assert actx.to_numpy(op.norm(dcoll, elem_mins - reference_min, np.inf)) < 1.e-14
        assert actx.to_numpy(op.norm(dcoll, elem_maxs - reference_max, np.inf)) < 1.e-14
        assert actx.to_numpy(op.norm(dcoll, elem_sums - reference_sum, np.inf)) < 1.e-14
    
    # }}}
    
    
    
    # You can test individual routines by typing
    # $ python test_grudge.py 'test_routine()'
    
    if __name__ == "__main__":
        import sys
        if len(sys.argv) > 1:
            exec(sys.argv[1])
        else:
            pytest.main([__file__])