Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
siqb = SpaceInvaderQueryBuilder(ctx)
# We can use leaves-to-balls lookup to get the set of overlapping balls for
# each box, and from there to compute the outer space invader distance.
lblb = LeavesToBallsLookupBuilder(ctx)
siq, _ = siqb(queue, tree, ball_centers, ball_radii)
lbl, _ = lblb(queue, tree, ball_centers, ball_radii)
# get data to host for test
tree = tree.get(queue=queue)
siq = siq.get(queue=queue)
lbl = lbl.get(queue=queue)
ball_centers = np.array([x.get() for x in ball_centers])
ball_radii = ball_radii.get()
# Find leaf boxes.
from boxtree import box_flags_enum
outer_space_invader_dist = np.zeros(tree.nboxes)
for ibox in range(tree.nboxes):
# We only want leaves here.
if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN:
continue
start, end = lbl.balls_near_box_starts[ibox:ibox + 2]
space_invaders = lbl.balls_near_box_lists[start:end]
if len(space_invaders) > 0:
outer_space_invader_dist[ibox] = np.max(np.abs(
tree.box_centers[:, ibox].reshape((-1, 1))
- ball_centers[:, space_invaders]))
assert np.allclose(siq, outer_space_invader_dist)
# }}}
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
@pytest.mark.opencl
def test_same_tree_with_zero_weight_particles(ctx_factory, dims):
logging.basicConfig(level=logging.INFO)
ntargets_values = [300, 400, 500]
stick_out_factors = [0, 0.1, 0.3, 1]
nsources = 20
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
trees = []
for stick_out_factor in stick_out_factors:
for ntargets in [40]:
np.random.seed(10)
sources = np.random.rand(dims, nsources)**2
sources[:, 0] = -0.1
sources[:, 1] = 1.1
np.random.seed()
targets = np.random.rand(dims, max(ntargets_values))[:, :ntargets].copy()
target_radii = np.random.rand(max(ntargets_values))[:ntargets]
sources = cl.array.to_device(queue, sources)
targets = cl.array.to_device(queue, targets)
refine_weights = cl.array.empty(queue, nsources + ntargets, np.int32)
refine_weights[:nsources] = 1
refine_weights[nsources:] = 0
tree, _ = tb(queue, sources, targets=targets,
target_radii=target_radii,
stick_out_factor=stick_out_factor,
max_leaf_refine_weight=10,
refine_weights=refine_weights,
debug=True)
tree = tree.get(queue=queue)
trees.append(tree)
print("TREE:", tree.nboxes)
if 0:
import matplotlib.pyplot as plt
for tree in trees:
plt.figure()
tree.plot()
plt.show()
# $ python test_tree.py 'test_routine(cl.create_some_context)'