Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.tools import ( # noqa: F401
make_normal_particle_array as p_normal,
make_surface_particle_array as p_surface,
make_uniform_particle_array as p_uniform,
particle_array_to_host,
ConstantOneExpansionWrangler)
import logging
logger = logging.getLogger(__name__)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder(
ConstantOneExpansionWrangler):
def __init__(self, tree, filtered_targets):
ConstantOneExpansionWrangler.__init__(self, tree)
self.filtered_targets = filtered_targets
def potential_zeros(self):
return np.zeros(self.filtered_targets.nfiltered_targets, dtype=np.float64)
def _get_target_slice(self, ibox):
pstart = self.filtered_targets.box_target_starts[ibox]
return slice(
pstart, pstart
+ self.filtered_targets.box_target_counts_nonchild[ibox])
def reorder_potentials(self, potentials):
tree_order_all_potentials = np.zeros(self.tree.ntargets, potentials.dtype)
tree_order_all_potentials[
self.filtered_targets.unfiltered_from_filtered_target_indices] \
= potentials
return tree_order_all_potentials[self.tree.sorted_target_ids]
class ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder(
ConstantOneExpansionWrangler):
def __init__(self, tree, filtered_targets):
ConstantOneExpansionWrangler.__init__(self, tree)
self.filtered_targets = filtered_targets
def _get_target_slice(self, ibox):
user_target_ids = self.filtered_targets.target_lists[
self.filtered_targets.target_starts[ibox]:
self.filtered_targets.target_starts[ibox+1]]
return self.tree.sorted_target_ids[user_target_ids]
@pytest.mark.parametrize("well_sep_is_n_away", [1, 2])
@pytest.mark.parametrize(("dims", "nsources_req", "ntargets_req",
"who_has_extent", "source_gen", "target_gen", "filter_kind",
"extent_norm", "from_sep_smaller_crit"),
(2, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"),
(2, 5 * 10**4, 4*10**4, "", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501
(2, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501
(3, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"),
(3, 5 * 10**5, 4*10**4, "", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501
(2, 10**5, None, "", p_normal, p_normal, "user", "linf", "static_linf"),
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "user", "linf", "static_linf"), # noqa: E501
(2, 10**5, None, "", p_normal, p_normal, "tree", "linf", "static_linf"),
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "tree", "linf", "static_linf"), # noqa: E501
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "precise_linf"), # noqa: E501
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "l2", "precise_linf"), # noqa: E501
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "l2", "static_l2"), # noqa: E501
])
def test_fmm_completeness(ctx_getter, dims, nsources_req, ntargets_req,
Andreas Klöckner
committed
who_has_extent, source_gen, target_gen, filter_kind, well_sep_is_n_away,
extent_norm, from_sep_smaller_crit):
"""Tests whether the built FMM traversal structures and driver completely
capture all interactions.
"""
sources_have_extent = "s" in who_has_extent
targets_have_extent = "t" in who_has_extent
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dtype = np.float64
try:
sources = source_gen(queue, nsources_req, dims, dtype, seed=15)
nsources = len(sources[0])
if ntargets_req is None:
# This says "same as sources" to the tree builder.
targets = None
ntargets = ntargets_req
else:
targets = target_gen(queue, ntargets_req, dims, dtype, seed=16)
ntargets = len(targets[0])
except ImportError:
pytest.skip("loo.py not available, but needed for particle array "
"generation")
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=12)
if sources_have_extent:
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
else:
source_radii = None
if targets_have_extent:
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
else:
target_radii = None
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=30,
source_radii=source_radii, target_radii=target_radii,
Andreas Klöckner
committed
debug=True, stick_out_factor=0.25, extent_norm=extent_norm)
if 0:
tree.get().plot()
import matplotlib.pyplot as pt
pt.show()
from boxtree.traversal import FMMTraversalBuilder
Andreas Klöckner
committed
tbuild = FMMTraversalBuilder(ctx,
well_sep_is_n_away=well_sep_is_n_away,
from_sep_smaller_crit=from_sep_smaller_crit)
trav, _ = tbuild(queue, tree, debug=True)
if who_has_extent:
pre_merge_trav = trav
Andreas Klöckner
committed
trav = trav.merge_close_lists(queue)
#weights = np.random.randn(nsources)
weights = np.ones(nsources)
weights_sum = np.sum(weights)
host_trav = trav.get(queue=queue)
host_tree = host_trav.tree
if who_has_extent:
pre_merge_host_trav = pre_merge_trav.get(queue=queue)
from boxtree.tree import ParticleListFilter
plfilt = ParticleListFilter(ctx)
flags = rng.uniform(queue, ntargets or nsources, np.int32, a=0, b=2) \
.astype(np.int8)
filtered_targets = plfilt.filter_target_lists_in_user_order(
queue, tree, flags)
wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder(
host_tree, filtered_targets.get(queue=queue))
elif filter_kind == "tree":
filtered_targets = plfilt.filter_target_lists_in_tree_order(
queue, tree, flags)
wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder(
host_tree, filtered_targets.get(queue=queue))
else:
raise ValueError("unsupported value of 'filter_kind'")
else:
wrangler = ConstantOneExpansionWrangler(host_tree)
flags = cl.array.empty(queue, ntargets or nsources, dtype=np.int8)
flags.fill(1)
if ntargets is None and not filter_kind:
# This check only works for targets == sources.
assert (wrangler.reorder_potentials(
wrangler.reorder_sources(weights)) == weights).all()
from boxtree.fmm import drive_fmm
pot = drive_fmm(host_trav, wrangler, weights)
if filter_kind:
pot = pot[flags.get() > 0]
rel_err = la.norm((pot - weights_sum) / nsources)
good = rel_err < 1e-8
# {{{ build, evaluate matrix (and identify incorrect interactions)
if 0 and not good:
mat = np.zeros((ntargets, nsources), dtype)
from pytools import ProgressBar
logging.getLogger().setLevel(logging.WARNING)
pb = ProgressBar("matrix", nsources)
unit_vec = np.zeros(nsources, dtype=dtype)
unit_vec[i] = 1
mat[:, i] = drive_fmm(host_trav, wrangler, unit_vec)
pb.progress()
pb.finished()
logging.getLogger().setLevel(logging.INFO)
import matplotlib.pyplot as pt
if 0:
pt.imshow(mat)
pt.colorbar()
incorrect_tgts, incorrect_srcs = np.where(mat != 1)
from boxtree.visualization import TreePlotter
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
tree_order_incorrect_tgts = \
host_tree.indices_to_tree_target_order(incorrect_tgts)
tree_order_incorrect_srcs = \
host_tree.indices_to_tree_source_order(incorrect_srcs)
src_boxes = [
for i in tree_order_incorrect_srcs]
tgt_boxes = [
for i in tree_order_incorrect_tgts]
# plot all sources/targets
if 0:
pt.plot(
host_tree.targets[0],
host_tree.targets[1],
"v", alpha=0.9)
pt.plot(
host_tree.sources[0],
host_tree.sources[1],
"gx", alpha=0.9)
# plot offending sources/targets
if 0:
pt.plot(
host_tree.targets[0][tree_order_incorrect_tgts],
host_tree.targets[1][tree_order_incorrect_tgts],
"rv")
pt.plot(
host_tree.sources[0][tree_order_incorrect_srcs],
host_tree.sources[1][tree_order_incorrect_srcs],
"go")
pt.gca().set_aspect("equal")
from boxtree.visualization import draw_box_lists
draw_box_lists(
plotter,
pre_merge_host_trav if who_has_extent else host_trav,
22)
# from boxtree.visualization import draw_same_level_non_well_sep_boxes
# draw_same_level_non_well_sep_boxes(plotter, host_trav, 2)
pt.show()
# }}}
import matplotlib.pyplot as pt
pt.plot(pot-weights_sum)
pt.show()
if 0 and not good:
import matplotlib.pyplot as pt
filt_targets = [
host_tree.targets[0][flags.get() > 0],
host_tree.targets[1][flags.get() > 0],
]
host_tree.plot()
bad = np.abs(pot - weights_sum) >= 1e-3
bad_targets = [
filt_targets[0][bad],
filt_targets[1][bad],
]
pt.plot(filt_targets[0], filt_targets[1], "x")
pt.plot(bad_targets[0], bad_targets[1], "v")
pt.show()
assert good
# {{{ test fmmlib integration
@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("use_dipoles", [True, False])
@pytest.mark.parametrize("helmholtz_k", [0, 2])
def test_pyfmmlib_fmm(ctx_getter, dims, use_dipoles, helmholtz_k):
logging.basicConfig(level=logging.INFO)
from pytest import importorskip
importorskip("pyfmmlib")
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 3000
ntargets = 1000
sources = p_normal(queue, nsources, dims, dtype, seed=15)
p_normal(queue, ntargets, dims, dtype, seed=18)
+ np.array([2, 0, 0])[:dims])
sources_host = particle_array_to_host(sources)
targets_host = particle_array_to_host(targets)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tbuild = FMMTraversalBuilder(ctx)
trav, _ = tbuild(queue, tree, debug=True)
trav = trav.get(queue=queue)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=20)
weights = rng.uniform(queue, nsources, dtype=np.float64).get()
#weights = np.ones(nsources)
dipole_vec = np.random.randn(dims, nsources)
else:
dipole_vec = None
if dims == 2 and helmholtz_k == 0:
base_nterms = 20
else:
base_nterms = 10
def fmm_level_to_nterms(tree, lev):
result = base_nterms
if lev < 3 and helmholtz_k:
# exercise order-varies-by-level capability
result += 5
if use_dipoles:
result += 1
return result
Andreas Klöckner
committed
from boxtree.pyfmmlib_integration import FMMLibExpansionWrangler
wrangler = FMMLibExpansionWrangler(
trav.tree, helmholtz_k,
fmm_level_to_nterms=fmm_level_to_nterms,
timing_data = {}
pot = drive_fmm(trav, wrangler, weights, timing_data=timing_data)
assert timing_data
# {{{ ref fmmlib computation
logger.info("computing direct (reference) result")
import pyfmmlib
fmmlib_routine = getattr(
pyfmmlib,
"%spot%s%ddall%s_vec" % (
wrangler.eqn_letter,
"fld" if dims == 3 else "grad",
dims,
"_dp" if use_dipoles else ""))
kwargs = {}
if dims == 3:
kwargs["iffld"] = False
else:
kwargs["ifgrad"] = False
kwargs["ifhess"] = False
if use_dipoles:
if helmholtz_k == 0 and dims == 2:
kwargs["dipstr"] = -weights * (dipole_vec[0] + 1j * dipole_vec[1])
else:
kwargs["dipstr"] = weights
kwargs["dipvec"] = dipole_vec
if helmholtz_k:
kwargs["zk"] = helmholtz_k
ref_pot = wrangler.finalize_potentials(
fmmlib_routine(
sources=sources_host.T, targets=targets_host.T,
**kwargs)[0]
)
rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf)
logger.info("relative l2 error vs fmmlib direct: %g" % rel_err)
assert rel_err < 1e-5, rel_err
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# }}}
# {{{ check against sumpy
try:
import sumpy # noqa
except ImportError:
have_sumpy = False
from warnings import warn
warn("sumpy unavailable: cannot compute independent reference "
"values for pyfmmlib")
else:
have_sumpy = True
if have_sumpy:
from sumpy.kernel import (
LaplaceKernel, HelmholtzKernel, DirectionalSourceDerivative)
from sumpy.p2p import P2P
sumpy_extra_kwargs = {}
if helmholtz_k:
knl = HelmholtzKernel(dims)
sumpy_extra_kwargs["k"] = helmholtz_k
else:
knl = LaplaceKernel(dims)
if use_dipoles:
knl = DirectionalSourceDerivative(knl)
sumpy_extra_kwargs["src_derivative_dir"] = dipole_vec
p2p = P2P(ctx,
[knl],
exclude_self=False)
evt, (sumpy_ref_pot,) = p2p(
queue, targets, sources, [weights],
out_host=True, **sumpy_extra_kwargs)
sumpy_rel_err = (
la.norm(pot - sumpy_ref_pot, np.inf)
/
la.norm(sumpy_ref_pot, np.inf))
logger.info("relative l2 error vs sumpy direct: %g" % sumpy_rel_err)
assert sumpy_rel_err < 1e-5, sumpy_rel_err
# }}}
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# {{{ test particle count thresholding in traversal generation
@pytest.mark.parametrize("enable_extents", [True, False])
def test_interaction_list_particle_count_thresholding(ctx_getter, enable_extents):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
logging.basicConfig(level=logging.INFO)
dims = 2
nsources = 1000
ntargets = 1000
dtype = np.float
max_particles_in_box = 30
# Ensure that we have underfilled boxes.
from_sep_smaller_min_nsources_cumul = 1 + max_particles_in_box
from boxtree.fmm import drive_fmm
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=15)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=12)
if enable_extents:
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype, a=-10, b=0)
else:
target_radii = None
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=max_particles_in_box,
target_radii=target_radii,
debug=True, stick_out_factor=0.25)
from boxtree.traversal import FMMTraversalBuilder
tbuild = FMMTraversalBuilder(ctx)
trav, _ = tbuild(queue, tree, debug=True,
_from_sep_smaller_min_nsources_cumul=from_sep_smaller_min_nsources_cumul)
weights = np.ones(nsources)
weights_sum = np.sum(weights)
host_trav = trav.get(queue=queue)
host_tree = host_trav.tree
wrangler = ConstantOneExpansionWrangler(host_tree)
pot = drive_fmm(host_trav, wrangler, weights)
assert (pot == weights_sum).all()
# }}}
# {{{ test fmm with float32 dtype
@pytest.mark.parametrize("enable_extents", [True, False])
def test_fmm_float32(ctx_getter, enable_extents):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
from pyopencl.characterize import has_struct_arg_count_bug
if has_struct_arg_count_bug(queue.device):
pytest.xfail("won't work on devices with the struct arg count issue")
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
logging.basicConfig(level=logging.INFO)
dims = 2
nsources = 1000
ntargets = 1000
dtype = np.float32
from boxtree.fmm import drive_fmm
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=15)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=12)
if enable_extents:
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype, a=-10, b=0)
else:
target_radii = None
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=30,
target_radii=target_radii,
debug=True, stick_out_factor=0.25)
from boxtree.traversal import FMMTraversalBuilder
tbuild = FMMTraversalBuilder(ctx)
trav, _ = tbuild(queue, tree, debug=True)
weights = np.ones(nsources)
weights_sum = np.sum(weights)
host_trav = trav.get(queue=queue)
host_tree = host_trav.tree
wrangler = ConstantOneExpansionWrangler(host_tree)
pot = drive_fmm(host_trav, wrangler, weights)
assert (pot == weights_sum).all()
# }}}
# You can test individual routines by typing
# $ python test_fmm.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else: