Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.tools import (
make_normal_particle_array as p_normal,
make_surface_particle_array as p_surface,
make_uniform_particle_array as p_uniform,
particle_array_to_host)
import logging
logger = logging.getLogger(__name__)
class ConstantOneExpansionWrangler(object):
"""This implements the 'analytical routines' for a Green's function that is
constant 1 everywhere. For 'charges' of 'ones', this should get every particle
a copy of the particle count.
"""
def __init__(self, tree):
self.tree = tree
def multipole_expansion_zeros(self):
return np.zeros(self.tree.nboxes, dtype=np.float64)
local_expansion_zeros = multipole_expansion_zeros
def potential_zeros(self):
return np.zeros(self.tree.ntargets, dtype=np.float64)
def _get_source_slice(self, ibox):
pstart = self.tree.box_source_starts[ibox]
return slice(
pstart, pstart + self.tree.box_source_counts_nonchild[ibox])
def _get_target_slice(self, ibox):
pstart = self.tree.box_target_starts[ibox]
return slice(
pstart, pstart + self.tree.box_target_counts_nonchild[ibox])
def reorder_sources(self, source_array):
return source_array[self.tree.user_source_ids]
def reorder_potentials(self, potentials):
return potentials[self.tree.sorted_target_ids]
def form_multipoles(self, level_start_source_box_nrs, source_boxes, src_weights):
mpoles = self.multipole_expansion_zeros()
pslice = self._get_source_slice(ibox)
mpoles[ibox] += np.sum(src_weights[pslice])
return mpoles
def coarsen_multipoles(self, level_start_source_parent_box_nrs,
source_parent_boxes, mpoles):
# 2 is the last relevant source_level.
# 1 is the last relevant target_level.
# (Nobody needs a multipole on level 0, i.e. for the root box.)
for source_level in range(tree.nlevels-1, 1, -1):
start, stop = level_start_source_parent_box_nrs[
source_level:source_level+2]
for ibox in source_parent_boxes[start:stop]:
for child in tree.box_child_ids[:, ibox]:
if child:
mpoles[ibox] += mpoles[child]
def eval_direct(self, target_boxes, neighbor_sources_starts,
neighbor_sources_lists, src_weights):
for itgt_box, tgt_ibox in enumerate(target_boxes):
tgt_pslice = self._get_target_slice(tgt_ibox)
start, end = neighbor_sources_starts[itgt_box:itgt_box+2]
#print "DIR: %s <- %s" % (tgt_ibox, neighbor_sources_lists[start:end])
for src_ibox in neighbor_sources_lists[start:end]:
src_pslice = self._get_source_slice(src_ibox)
src_sum += np.sum(src_weights[src_pslice])
pot[tgt_pslice] = src_sum
return pot
def multipole_to_local(self,
level_start_target_or_target_parent_box_nrs,
target_or_target_parent_boxes,
starts, lists, mpole_exps):
local_exps = self.local_expansion_zeros()
for itgt_box, tgt_ibox in enumerate(target_or_target_parent_boxes):
start, end = starts[itgt_box:itgt_box+2]
#print tgt_ibox, "<-", lists[start:end]
for src_ibox in lists[start:end]:
contrib += mpole_exps[src_ibox]
local_exps[tgt_ibox] += contrib
def eval_multipoles(self, level_start_target_box_nrs, target_boxes,
sep_smaller_nonsiblings_by_level, mpole_exps):
for ssn in sep_smaller_nonsiblings_by_level:
for itgt_box, tgt_ibox in enumerate(target_boxes):
tgt_pslice = self._get_target_slice(tgt_ibox)
contrib = 0
start, end = ssn.starts[itgt_box:itgt_box+2]
for src_ibox in ssn.lists[start:end]:
contrib += mpole_exps[src_ibox]
def form_locals(self,
level_start_target_or_target_parent_box_nrs,
target_or_target_parent_boxes, starts, lists, src_weights):
local_exps = self.local_expansion_zeros()
for itgt_box, tgt_ibox in enumerate(target_or_target_parent_boxes):
start, end = starts[itgt_box:itgt_box+2]
#print "LIST 4", tgt_ibox, "<-", lists[start:end]
contrib = 0
for src_ibox in lists[start:end]:
src_pslice = self._get_source_slice(src_ibox)
contrib += np.sum(src_weights[src_pslice])
local_exps[tgt_ibox] += contrib
return local_exps
def refine_locals(self, level_start_target_or_target_parent_box_nrs,
target_or_target_parent_boxes, local_exps):
for target_lev in range(1, self.tree.nlevels):
start, stop = level_start_target_or_target_parent_box_nrs[
target_lev:target_lev+2]
for ibox in target_or_target_parent_boxes[start:stop]:
local_exps[ibox] += local_exps[self.tree.box_parent_ids[ibox]]
def eval_locals(self, level_start_target_box_nrs, target_boxes, local_exps):
tgt_pslice = self._get_target_slice(ibox)
pot[tgt_pslice] += local_exps[ibox]
return pot
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
class ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder(
ConstantOneExpansionWrangler):
def __init__(self, tree, filtered_targets):
ConstantOneExpansionWrangler.__init__(self, tree)
self.filtered_targets = filtered_targets
def potential_zeros(self):
return np.zeros(self.filtered_targets.nfiltered_targets, dtype=np.float64)
def _get_target_slice(self, ibox):
pstart = self.filtered_targets.box_target_starts[ibox]
return slice(
pstart, pstart
+ self.filtered_targets.box_target_counts_nonchild[ibox])
def reorder_potentials(self, potentials):
tree_order_all_potentials = np.zeros(self.tree.ntargets, potentials.dtype)
tree_order_all_potentials[
self.filtered_targets.unfiltered_from_filtered_target_indices] \
= potentials
return tree_order_all_potentials[self.tree.sorted_target_ids]
class ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder(
ConstantOneExpansionWrangler):
def __init__(self, tree, filtered_targets):
ConstantOneExpansionWrangler.__init__(self, tree)
self.filtered_targets = filtered_targets
def _get_target_slice(self, ibox):
user_target_ids = self.filtered_targets.target_lists[
self.filtered_targets.target_starts[ibox]:
self.filtered_targets.target_starts[ibox+1]]
return self.tree.sorted_target_ids[user_target_ids]
@pytest.mark.parametrize(("dims", "nsources_req", "ntargets_req",
"who_has_extent", "source_gen", "target_gen", "filter_kind"),
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
(2, 10**5, None, "", p_normal, p_normal, None),
(3, 5 * 10**4, 4*10**4, "", p_normal, p_normal, None),
(2, 5 * 10**5, 4*10**4, "s", p_normal, p_normal, None),
(2, 5 * 10**5, 4*10**4, "st", p_normal, p_normal, None),
(2, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None),
(2, 5 * 10**5, 4*10**4, "st", p_surface, p_uniform, None),
(3, 10**5, None, "", p_normal, p_normal, None),
(3, 5 * 10**4, 4*10**4, "", p_normal, p_normal, None),
(3, 5 * 10**5, 4*10**4, "s", p_normal, p_normal, None),
(3, 5 * 10**5, 4*10**4, "st", p_normal, p_normal, None),
(3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None),
(3, 5 * 10**5, 4*10**4, "st", p_surface, p_uniform, None),
(2, 10**5, None, "", p_normal, p_normal, "user"),
(3, 5 * 10**4, 4*10**4, "", p_normal, p_normal, "user"),
(2, 5 * 10**5, 4*10**4, "s", p_normal, p_normal, "user"),
(2, 5 * 10**5, 4*10**4, "st", p_normal, p_normal, "user"),
(2, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "user"),
(2, 5 * 10**5, 4*10**4, "st", p_surface, p_uniform, "user"),
(2, 10**5, None, "", p_normal, p_normal, "tree"),
(3, 5 * 10**4, 4*10**4, "", p_normal, p_normal, "tree"),
(2, 5 * 10**5, 4*10**4, "s", p_normal, p_normal, "tree"),
(2, 5 * 10**5, 4*10**4, "st", p_normal, p_normal, "tree"),
(2, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "tree"),
(2, 5 * 10**5, 4*10**4, "st", p_surface, p_uniform, "tree"),
])
def test_fmm_completeness(ctx_getter, dims, nsources_req, ntargets_req,
who_has_extent, source_gen, target_gen, filter_kind):
"""Tests whether the built FMM traversal structures and driver completely
capture all interactions.
"""
sources_have_extent = "s" in who_has_extent
targets_have_extent = "t" in who_has_extent
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dtype = np.float64
try:
sources = source_gen(queue, nsources_req, dims, dtype, seed=15)
nsources = len(sources[0])
if ntargets_req is None:
# This says "same as sources" to the tree builder.
targets = None
ntargets = ntargets_req
else:
targets = target_gen(queue, ntargets_req, dims, dtype, seed=16)
ntargets = len(targets[0])
except ImportError:
pytest.skip("loo.py not available, but needed for particle array "
"generation")
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=12)
if sources_have_extent:
source_radii = 2**rng.uniform(queue, nsources, dtype=dtype,
a=-10, b=0)
else:
source_radii = None
if targets_have_extent:
target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype,
a=-10, b=0)
else:
target_radii = None
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=30,
source_radii=source_radii, target_radii=target_radii,
debug=True)
if 0:
tree.get().plot()
import matplotlib.pyplot as pt
pt.show()
from boxtree.traversal import FMMTraversalBuilder
tbuild = FMMTraversalBuilder(ctx)
trav, _ = tbuild(queue, tree, debug=True)
Andreas Klöckner
committed
if trav.sep_close_smaller_starts is not None:
trav = trav.merge_close_lists(queue)
weights = np.random.randn(nsources)
#weights = np.ones(nsources)
weights_sum = np.sum(weights)
host_trav = trav.get(queue=queue)
host_tree = host_trav.tree
if filter_kind:
flags = rng.uniform(queue, ntargets or nsources, np.int32, a=0, b=2) \
.astype(np.int8)
if filter_kind == "user":
from boxtree.tree import filter_target_lists_in_user_order
filtered_targets = filter_target_lists_in_user_order(queue, tree, flags)
wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder(
host_tree, filtered_targets.get(queue=queue))
elif filter_kind == "tree":
from boxtree.tree import filter_target_lists_in_tree_order
filtered_targets = filter_target_lists_in_tree_order(queue, tree, flags)
wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder(
host_tree, filtered_targets.get(queue=queue))
else:
raise ValueError("unsupported value of 'filter_kind'")
else:
wrangler = ConstantOneExpansionWrangler(host_tree)
if ntargets is None and not filter_kind:
# This check only works for targets == sources.
assert (wrangler.reorder_potentials(
wrangler.reorder_sources(weights)) == weights).all()
from boxtree.fmm import drive_fmm
pot = drive_fmm(host_trav, wrangler, weights)
# {{{ build, evaluate matrix (and identify missing interactions)
if 0:
mat = np.zeros((ntargets, nsources), dtype)
from pytools import ProgressBar
logging.getLogger().setLevel(logging.WARNING)
pb = ProgressBar("matrix", nsources)
unit_vec = np.zeros(nsources, dtype=dtype)
unit_vec[i] = 1
mat[:, i] = drive_fmm(host_trav, wrangler, unit_vec)
pb.progress()
pb.finished()
logging.getLogger().setLevel(logging.INFO)
import matplotlib.pyplot as pt
if 1:
pt.spy(mat)
pt.show()
missing_tgts, missing_srcs = np.where(mat == 0)
if 1 and len(missing_tgts):
from boxtree.visualization import TreePlotter
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
tree_order_missing_tgts = \
host_tree.indices_to_tree_target_order(missing_tgts)
tree_order_missing_srcs = \
host_tree.indices_to_tree_source_order(missing_srcs)
src_boxes = [
for i in tree_order_missing_srcs]
tgt_boxes = [
for i in tree_order_missing_tgts]
pt.plot(
host_tree.targets[0][tree_order_missing_tgts],
host_tree.targets[1][tree_order_missing_tgts],
"rv")
pt.plot(
host_tree.sources[0][tree_order_missing_srcs],
host_tree.sources[1][tree_order_missing_srcs],
"go")
pt.gca().set_aspect("equal")
pt.show()
# }}}
if filter_kind:
pot = pot[flags.get() > 0]
rel_err = la.norm((pot - weights_sum) / nsources)
good = rel_err < 1e-8
import matplotlib.pyplot as pt
pt.plot(pot-weights_sum)
pt.show()
if 0 and not good:
import matplotlib.pyplot as pt
filt_targets = [
host_tree.targets[0][flags.get() > 0],
host_tree.targets[1][flags.get() > 0],
]
host_tree.plot()
bad = np.abs(pot - weights_sum) >= 1e-3
bad_targets = [
filt_targets[0][bad],
filt_targets[1][bad],
]
pt.plot(filt_targets[0], filt_targets[1], "x")
pt.plot(bad_targets[0], bad_targets[1], "v")
pt.show()
assert good
@pytest.mark.parametrize("dims", [2, 3])
def test_pyfmmlib_fmm(ctx_getter, dims):
logging.basicConfig(level=logging.INFO)
from pytest import importorskip
importorskip("pyfmmlib")
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
nsources = 3000
ntargets = 1000
sources = p_normal(queue, nsources, dims, dtype, seed=15)
p_normal(queue, ntargets, dims, dtype, seed=18)
+ np.array([2, 0, 0])[:dims])
sources_host = particle_array_to_host(sources)
targets_host = particle_array_to_host(targets)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, targets=targets,
max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tbuild = FMMTraversalBuilder(ctx)
trav, _ = tbuild(queue, tree, debug=True)
trav = trav.get(queue=queue)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=20)
weights = rng.uniform(queue, nsources, dtype=np.float64).get()
#weights = np.ones(nsources)
from boxtree.pyfmmlib_integration import HelmholtzExpansionWrangler
wrangler = HelmholtzExpansionWrangler(trav.tree, helmholtz_k, nterms=10)
from boxtree.fmm import drive_fmm
pot = drive_fmm(trav, wrangler, weights)
logger.info("computing direct (reference) result")
if dims == 2:
from pyfmmlib import hpotgrad2dall_vec
ref_pot, _, _ = hpotgrad2dall_vec(ifgrad=False, ifhess=False,
sources=sources_host.T, charge=weights,
targets=targets_host.T, zk=helmholtz_k)
else:
from pyfmmlib import hpotfld3dall_vec
ref_pot, _ = hpotfld3dall_vec(iffld=False,
sources=sources_host.T, charge=weights,
targets=targets_host.T, zk=helmholtz_k)
rel_err = la.norm(pot - ref_pot) / la.norm(ref_pot)
logger.info("relative l2 error: %g" % rel_err)
assert rel_err < 1e-5
# }}}
# You can test individual routines by typing
# $ python test_fmm.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker