Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
loopy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ben Sepanski
loopy
Commits
c58566b4
Commit
c58566b4
authored
12 years ago
by
Andreas Klöckner
Browse files
Options
Downloads
Patches
Plain Diff
Clean up the 3D SEM example.
parent
7530148a
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/sem_reagan.py
+6
-132
6 additions, 132 deletions
examples/sem_reagan.py
with
6 additions
and
132 deletions
examples/sem_reagan.py
+
6
−
132
View file @
c58566b4
...
@@ -35,129 +35,6 @@ from pyopencl.tools import pytest_generate_tests_for_pyopencl \
...
@@ -35,129 +35,6 @@ from pyopencl.tools import pytest_generate_tests_for_pyopencl \
def
test_tim2d
(
ctx_factory
):
dtype
=
np
.
float32
ctx
=
ctx_factory
()
order
=
"
C
"
n
=
8
from
pymbolic
import
var
K_sym
=
var
(
"
K
"
)
field_shape
=
(
K_sym
,
n
,
n
)
# K - run-time symbolic
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
"
[K] -> {[i,j,e,m,o,gi]: 0<=i,j,m,o<%d and 0<=e<K and 0<=gi<3}
"
%
n
,
[
"
ur(a,b) := sum(@o, D[a,o]*u[e,o,b])
"
,
"
us(a,b) := sum(@o, D[b,o]*u[e,a,o])
"
,
#"Gu(mat_entry,a,b) := G[mat_entry,e,m,j]*ur(m,j)",
"
Gux(a,b) := G$x[0,e,a,b]*ur(a,b)+G$x[1,e,a,b]*us(a,b)
"
,
"
Guy(a,b) := G$y[1,e,a,b]*ur(a,b)+G$y[2,e,a,b]*us(a,b)
"
,
"
lap[e,i,j] =
"
"
sum(m, D[m,i]*Gux(m,j))
"
"
+ sum(m, D[m,j]*Guy(i,m))
"
],
[
lp
.
GlobalArg
(
"
u
"
,
dtype
,
shape
=
field_shape
,
order
=
order
),
lp
.
GlobalArg
(
"
lap
"
,
dtype
,
shape
=
field_shape
,
order
=
order
),
lp
.
GlobalArg
(
"
G
"
,
dtype
,
shape
=
(
3
,)
+
field_shape
,
order
=
order
),
# lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order),
lp
.
GlobalArg
(
"
D
"
,
dtype
,
shape
=
(
n
,
n
),
order
=
order
),
# lp.ImageArg("D", dtype, shape=(n, n)),
lp
.
ValueArg
(
"
K
"
,
np
.
int32
,
approximately
=
1000
),
],
name
=
"
semlap2D
"
,
assumptions
=
"
K>=1
"
)
seq_knl
=
knl
def
variant_orig
(
knl
):
knl
=
lp
.
tag_inames
(
knl
,
dict
(
i
=
"
l.0
"
,
j
=
"
l.1
"
,
e
=
"
g.0
"
))
knl
=
lp
.
add_prefetch
(
knl
,
"
D[:,:]
"
)
knl
=
lp
.
add_prefetch
(
knl
,
"
u[e, :, :]
"
)
knl
=
lp
.
precompute
(
knl
,
"
ur(m,j)
"
,
np
.
float32
,
[
"
m
"
,
"
j
"
])
knl
=
lp
.
precompute
(
knl
,
"
us(i,m)
"
,
np
.
float32
,
[
"
i
"
,
"
m
"
])
knl
=
lp
.
precompute
(
knl
,
"
Gux(m,j)
"
,
np
.
float32
,
[
"
m
"
,
"
j
"
])
knl
=
lp
.
precompute
(
knl
,
"
Guy(i,m)
"
,
np
.
float32
,
[
"
i
"
,
"
m
"
])
knl
=
lp
.
add_prefetch
(
knl
,
"
G$x[:,e,:,:]
"
)
knl
=
lp
.
add_prefetch
(
knl
,
"
G$y[:,e,:,:]
"
)
knl
=
lp
.
tag_inames
(
knl
,
dict
(
o
=
"
unr
"
))
knl
=
lp
.
tag_inames
(
knl
,
dict
(
m
=
"
unr
"
))
knl
=
lp
.
set_instruction_priority
(
knl
,
"
D_fetch
"
,
5
)
print
knl
return
knl
for
variant
in
[
variant_orig
]:
kernel_gen
=
lp
.
generate_loop_schedules
(
variant
(
knl
))
kernel_gen
=
lp
.
check_kernels
(
kernel_gen
,
dict
(
K
=
1000
))
K
=
1000
lp
.
auto_test_vs_ref
(
seq_knl
,
ctx
,
kernel_gen
,
op_count
=
[
K
*
(
n
*
n
*
n
*
2
*
2
+
n
*
n
*
2
*
3
+
n
**
3
*
2
*
2
)
/
1e9
],
op_label
=
[
"
GFlops
"
],
parameters
=
{
"
K
"
:
K
})
def
make_me_a_test_test_tim3d_slab
(
ctx_factory
):
dtype
=
np
.
float32
ctx
=
ctx_factory
()
order
=
"
C
"
n
=
8
from
pymbolic
import
var
# K - run-time symbolic
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
"
[E] -> {[i,j,k, o, e]: 0<=i,j,k,o < n and 0<=e<E }
"
,
"""
<> ur[i,j,k] = sum(@o, D[i,o]*u[e,o,j,k])
<> us[i,j,k] = sum(@o, D[j,o]*u[e,i,o,k])
<> ut[i,j,k] = sum(@o, D[k,o]*u[e,i,j,o])
"""
,
[
lp
.
GlobalArg
(
"
u
"
,
dtype
,
shape
=
"
E,n,n,n
"
,
order
=
order
),
# lp.GlobalArg("G", dtype, shape=(3,)+field_shape, order=order),
# lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order),
lp
.
GlobalArg
(
"
D
"
,
dtype
,
shape
=
(
n
,
n
),
order
=
order
),
# lp.ImageArg("D", dtype, shape=(n, n)),
lp
.
ValueArg
(
"
E
"
,
np
.
int32
,
approximately
=
1000
),
],
name
=
"
semdiff3D
"
,
assumptions
=
"
E>=1
"
,
defines
=
{
"
n
"
:
n
})
seq_knl
=
knl
def
variant_orig
(
knl
):
return
knl
for
variant
in
[
variant_orig
]:
kernel_gen
=
lp
.
generate_loop_schedules
(
variant
(
knl
))
kernel_gen
=
lp
.
check_kernels
(
kernel_gen
,
dict
(
K
=
1000
))
E
=
1000
lp
.
auto_test_vs_ref
(
seq_knl
,
ctx
,
kernel_gen
,
op_count
=
[
E
*
(
n
*
n
*
n
*
2
*
2
+
n
*
n
*
2
*
3
+
n
**
3
*
2
*
2
)
/
1e9
],
op_label
=
[
"
GFlops
"
],
parameters
=
{
"
E
"
:
E
})
def
test_tim3d_slab
(
ctx_factory
):
def
test_tim3d_slab
(
ctx_factory
):
dtype
=
np
.
float32
dtype
=
np
.
float32
ctx
=
ctx_factory
()
ctx
=
ctx_factory
()
...
@@ -165,9 +42,6 @@ def test_tim3d_slab(ctx_factory):
...
@@ -165,9 +42,6 @@ def test_tim3d_slab(ctx_factory):
Nq
=
8
Nq
=
8
from
pymbolic
import
var
# K - run-time symbolic
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
"
[E] -> {[i,j, k, o,m, e]: 0<=i,j,k,o,m < Nq and 0<=e<E }
"
,
"
[E] -> {[i,j, k, o,m, e]: 0<=i,j,k,o,m < Nq and 0<=e<E }
"
,
"""
"""
...
@@ -179,9 +53,9 @@ def test_tim3d_slab(ctx_factory):
...
@@ -179,9 +53,9 @@ def test_tim3d_slab(ctx_factory):
Gus(a,b,c) := G[1,e,a,b,c]*ur(a,b,c)+G[3,e,a,b,c]*us(a,b,c)+G[4,e,a,b,c]*ut(a,b,c)
Gus(a,b,c) := G[1,e,a,b,c]*ur(a,b,c)+G[3,e,a,b,c]*us(a,b,c)+G[4,e,a,b,c]*ut(a,b,c)
Gut(a,b,c) := G[2,e,a,b,c]*ur(a,b,c)+G[4,e,a,b,c]*us(a,b,c)+G[5,e,a,b,c]*ut(a,b,c)
Gut(a,b,c) := G[2,e,a,b,c]*ur(a,b,c)+G[4,e,a,b,c]*us(a,b,c)+G[5,e,a,b,c]*ut(a,b,c)
lapr(a,b,c):= sum(m, D[m,a]*Gur(m,b,c))
lapr(a,b,c):= sum(m, D[m,a]*Gur(m,b,c))
laps(a,b,c):= sum(m, D[m,b]*Gus(a,m,c))
laps(a,b,c):= sum(m, D[m,b]*Gus(a,m,c))
lapt(a,b,c):= sum(m, D[m,c]*Gut(a,b,m))
lapt(a,b,c):= sum(m, D[m,c]*Gut(a,b,m))
lap[e,i,j,k] = lapr(i,j,k) + laps(i,j,k) + lapt(i,j,k)
lap[e,i,j,k] = lapr(i,j,k) + laps(i,j,k) + lapt(i,j,k)
"""
,
"""
,
...
@@ -194,7 +68,7 @@ def test_tim3d_slab(ctx_factory):
...
@@ -194,7 +68,7 @@ def test_tim3d_slab(ctx_factory):
lp
.
ValueArg
(
"
E
"
,
np
.
int32
,
approximately
=
1000
),
lp
.
ValueArg
(
"
E
"
,
np
.
int32
,
approximately
=
1000
),
],
],
name
=
"
semdiff3D
"
,
assumptions
=
"
E>=1
"
,
name
=
"
semdiff3D
"
,
assumptions
=
"
E>=1
"
,
defines
=
{
"
Nq
"
:
Nq
})
defines
=
{
"
Nq
"
:
Nq
})
for
derivative
in
"
rst
"
:
for
derivative
in
"
rst
"
:
knl
=
lp
.
duplicate_inames
(
knl
,
"
o
"
,
within
=
"
... < lap
"
+
derivative
,
suffix
=
"
_
"
+
derivative
)
knl
=
lp
.
duplicate_inames
(
knl
,
"
o
"
,
within
=
"
... < lap
"
+
derivative
,
suffix
=
"
_
"
+
derivative
)
...
@@ -203,7 +77,7 @@ def test_tim3d_slab(ctx_factory):
...
@@ -203,7 +77,7 @@ def test_tim3d_slab(ctx_factory):
def
variant_orig
(
knl
):
def
variant_orig
(
knl
):
return
knl
return
knl
knl
=
lp
.
tag_inames
(
knl
,
dict
(
e
=
"
g.0
"
,
i
=
"
l.0
"
,
j
=
"
l.1
"
),
)
knl
=
lp
.
tag_inames
(
knl
,
dict
(
e
=
"
g.0
"
,
i
=
"
l.0
"
,
j
=
"
l.1
"
),
)
for
derivative
,
par_names
in
[
for
derivative
,
par_names
in
[
(
"
r
"
,
[
"
j
"
,
"
k
"
]),
(
"
r
"
,
[
"
j
"
,
"
k
"
]),
...
@@ -214,7 +88,7 @@ def test_tim3d_slab(ctx_factory):
...
@@ -214,7 +88,7 @@ def test_tim3d_slab(ctx_factory):
print
knl
print
knl
return
knl
return
knl
#print lp.preprocess_kernel(knl)
#print lp.preprocess_kernel(knl)
#1/0
#1/0
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment