Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
loopy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ben Sepanski
loopy
Commits
9ad444e6
Commit
9ad444e6
authored
13 years ago
by
Andreas Klöckner
Browse files
Options
Downloads
Patches
Plain Diff
Pick (more) sensible names for reduction inames. Remove non-ND FEM quadrature.
parent
e9baab6d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
loopy/preprocess.py
+1
-1
1 addition, 1 deletion
loopy/preprocess.py
test/test_fem_assembly.py
+0
-82
0 additions, 82 deletions
test/test_fem_assembly.py
with
1 addition
and
83 deletions
loopy/preprocess.py
+
1
−
1
View file @
9ad444e6
...
...
@@ -141,7 +141,7 @@ def realize_reduction(kernel):
from
pymbolic
import
var
target_var_name
=
kernel
.
make_unique_var_name
(
"
acc
"
,
target_var_name
=
kernel
.
make_unique_var_name
(
"
acc
_
"
+
"
_
"
.
join
(
expr
.
inames
)
,
extra_used_vars
=
set
(
new_temporary_variables
))
target_var
=
var
(
target_var_name
)
...
...
This diff is collapsed.
Click to expand it.
test/test_fem_assembly.py
+
0
−
82
View file @
9ad444e6
...
...
@@ -26,88 +26,6 @@ def test_laplacian_stiffness(ctx_factory):
from
pymbolic
import
var
Nc_sym
=
var
(
"
Nc
"
)
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
"
[Nc] -> {[K,i,j,q, ax_a, ax_b, ax_c]: 0<=K<Nc and 0<=i,j<%(Nb)d and 0<=q<%(Nq)d
"
"
and 0<= ax_c < %(dim)d}
"
%
dict
(
Nb
=
Nb
,
Nq
=
Nq
,
dim
=
dim
),
[
"
dPsi(a, dxi) := sum_float32(ax_c,
"
"
jacInv[ax_c,dxi,K,q] * DPsi[ax_c,a,q])
"
,
"
A[K, i, j] = sum_float32(q, w[q] * jacDet[K,q] * (
"
"
dPsi(0,0)*dPsi(1,0) + dPsi(0,1)*dPsi(1,1)))
"
],
[
lp
.
ArrayArg
(
"
jacInv
"
,
dtype
,
shape
=
(
dim
,
dim
,
Nc_sym
,
Nq
),
order
=
order
),
lp
.
ConstantArrayArg
(
"
DPsi
"
,
dtype
,
shape
=
(
dim
,
Nb
,
Nq
),
order
=
order
),
lp
.
ArrayArg
(
"
jacDet
"
,
dtype
,
shape
=
(
Nc_sym
,
Nq
),
order
=
order
),
lp
.
ConstantArrayArg
(
"
w
"
,
dtype
,
shape
=
(
Nq
,
dim
),
order
=
order
),
lp
.
ArrayArg
(
"
A
"
,
dtype
,
shape
=
(
Nc_sym
,
Nb
,
Nb
),
order
=
order
),
lp
.
ScalarArg
(
"
Nc
"
,
np
.
int32
,
approximately
=
1000
),
],
name
=
"
lapquad
"
,
assumptions
=
"
Nc>=1
"
)
knl
=
lp
.
tag_dimensions
(
knl
,
dict
(
ax_c
=
"
unr
"
))
seq_knl
=
knl
#print lp.preprocess_kernel(seq_knl)
#1/0
def
variant_1
(
knl
):
# no ILP across elements
knl
=
lp
.
split_dimension
(
knl
,
"
K
"
,
16
,
outer_tag
=
"
g.0
"
,
slabs
=
(
0
,
1
))
knl
=
lp
.
tag_dimensions
(
knl
,
{
"
i
"
:
"
l.0
"
,
"
j
"
:
"
l.1
"
})
knl
=
lp
.
add_prefetch
(
knl
,
'
jacInv
'
,
[
"
jacInv_dim_0
"
,
"
jacInv_dim_1
"
,
"
K_inner
"
,
"
q
"
])
return
knl
def
variant_2
(
knl
):
# with ILP across elements
knl
=
lp
.
split_dimension
(
knl
,
"
K
"
,
16
,
outer_tag
=
"
g.0
"
,
slabs
=
(
0
,
1
))
knl
=
lp
.
split_dimension
(
knl
,
"
K_inner
"
,
4
,
inner_tag
=
"
ilp
"
)
knl
=
lp
.
tag_dimensions
(
knl
,
{
"
i
"
:
"
l.0
"
,
"
j
"
:
"
l.1
"
})
knl
=
lp
.
add_prefetch
(
knl
,
"
jacInv
"
,
[
"
jacInv_dim_0
"
,
"
jacInv_dim_1
"
,
"
K_inner_inner
"
,
"
K_inner_outer
"
,
"
q
"
])
return
knl
def
variant_3
(
knl
):
# no ILP across elements, precompute dPsiTransf
knl
=
lp
.
split_dimension
(
knl
,
"
K
"
,
16
,
outer_tag
=
"
g.0
"
,
slabs
=
(
0
,
1
))
knl
=
lp
.
tag_dimensions
(
knl
,
{
"
i
"
:
"
l.0
"
,
"
j
"
:
"
l.1
"
})
knl
=
lp
.
precompute
(
knl
,
"
dPsi
"
,
np
.
float32
,)
#default_tag=None)
knl
=
lp
.
add_prefetch
(
knl
,
"
jacInv
"
,
[
"
jacInv_dim_0
"
,
"
jacInv_dim_1
"
,
"
K_inner
"
,
"
q
"
])
return
knl
#for variant in [variant_1, variant_2]:
for
variant
in
[
variant_3
]:
kernel_gen
=
lp
.
generate_loop_schedules
(
variant
(
knl
),
loop_priority
=
[
"
jacInv_dim_0
"
,
"
jacInv_dim_1
"
])
kernel_gen
=
lp
.
check_kernels
(
kernel_gen
,
dict
(
Nc
=
Nc
))
lp
.
auto_test_vs_seq
(
seq_knl
,
ctx
,
kernel_gen
,
op_count
=
0
,
op_label
=
"
GFlops
"
,
parameters
=
{
"
Nc
"
:
Nc
},
print_seq_code
=
True
,
timing_rounds
=
30
)
def
test_laplacian_stiffness_nd
(
ctx_factory
):
dtype
=
np
.
float32
ctx
=
ctx_factory
()
order
=
"
C
"
dim
=
2
Nq
=
40
# num. quadrature points
Nc
=
1000
# num. cells
Nb
=
20
# num. basis functions
# K - run-time symbolic
from
pymbolic
import
var
Nc_sym
=
var
(
"
Nc
"
)
knl
=
lp
.
make_kernel
(
ctx
.
devices
[
0
],
"
[Nc] -> {[K,i,j,q, ax_a, ax_b]: 0<=K<Nc and 0<=i,j<%(Nb)d and 0<=q<%(Nq)d
"
"
and 0<= ax_a, ax_b < %(dim)d}
"
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment