Newer
Older
from __future__ import division
import numpy as np
import pyopencl as cl
import loopy as lp
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
1/0 # not ready
1/0 # not adapted to new language
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 8
from pymbolic import var
K_sym = var("K")
# load: 1+6 fields + 1/N D entry
# store: 1 fields
# perform: N*2*6 + 3*5 flops
# ratio: (12*N+15)/8 flops per 4 bytes on bus
# ~ 14 FLOPS per 4 bytes at N=8
# ~ 525 GFLOPS max on a 150GB/s device at N=8 if done perfectly
# K - run-time symbolic
knl = lp.make_kernel(ctx.devices[0],
"[K] -> {[i,j,k,e,m,o1,o2,o3,gi]: 0<=i,j,k,m,o1,o2,o3<%d and 0<=e<K and 0<=gi<6}" % n,
"CSE: ur(i,j,k) = sum_float32(o1, D[i,o1]*cse(u[e,o1,j,k], urf))",
"CSE: us(i,j,k) = sum_float32(o2, D[j,o2]*cse(u[e,i,o2,k], usf))",
"CSE: ut(i,j,k) = sum_float32(o3, D[k,o3]*cse(u[e,i,j,o3], utf))",
# define function
"CSE: Gu(i,j,k) = G[0,e,i,j,k]*ur(i,j,k) + G[1,e,i,j,k]*us(i,j,k) + G[2,e,i,j,k]*ut(i,j,k)",
"CSE: Gv(i,j,k) = G[1,e,i,j,k]*ur(i,j,k) + G[3,e,i,j,k]*us(i,j,k) + G[4,e,i,j,k]*ut(i,j,k)",
"CSE: Gw(i,j,k) = G[2,e,i,j,k]*ur(i,j,k) + G[4,e,i,j,k]*us(i,j,k) + G[5,e,i,j,k]*ut(i,j,k)",
" sum_float32(m, D[m,i]*Gu(m,j,k))"
"+ sum_float32(m, D[m,j]*Gv(i,m,k))"
"+ sum_float32(m, D[m,k]*Gw(i,j,m))"
lp.GlobalArg("u", dtype, shape=field_shape, order=order),
lp.GlobalArg("lap", dtype, shape=field_shape, order=order),
lp.GlobalArg("G", dtype, shape=(6,)+field_shape, order=order),
lp.GlobalArg("D", dtype, shape=(n, n), order=order),
lp.ValueArg("K", np.int32, approximately=1000),
#print lp.preprocess_kernel(knl, cse_ok=True)
#1/0
#
#print knl
#1/0
knl = lp.realize_cse(knl, "urf", np.float32, ["o1"])
knl = lp.realize_cse(knl, "usf", np.float32, ["o2"])
knl = lp.realize_cse(knl, "utf", np.float32, ["o3"])
knl = lp.realize_cse(knl, "Gu", np.float32, ["m", "j", "k"])
knl = lp.realize_cse(knl, "Gv", np.float32, ["i", "m", "k"])
knl = lp.realize_cse(knl, "Gw", np.float32, ["i", "j", "m"])
knl = lp.realize_cse(knl, "ur", np.float32, ["k", "j", "m"])
knl = lp.realize_cse(knl, "us", np.float32, ["i", "m", "k"])
knl = lp.realize_cse(knl, "ut", np.float32, ["i", "j", "m"])
if 0:
pass
#seq_knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
#seq_knl = lp.add_prefetch(seq_knl, "D", ["m", "j"])
#seq_knl = lp.add_prefetch(seq_knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
knl = lp.add_prefetch(knl, "D", ["m", "j"])
#knl = lp.add_prefetch(knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
#knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
Andreas Klöckner
committed
#print seq_knl
Andreas Klöckner
committed
#1/0
knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
kernel_gen = lp.generate_loop_schedules(knl,
loop_priority=["m_fetch_G", "i_fetch_u"])
kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
op_count=K*(n*n*n*n*2*3 + n*n*n*5*3 + n**4 * 2*3)/1e9,
op_label="GFlops",
parameters={"K": K}, print_seq_code=True)
def test_laplacian_lmem(ctx_factory):
1/0 # not adapted to new language
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 8
from pymbolic import var
K_sym = var("K")
field_shape = (K_sym, n, n, n)
# K - run-time symbolic
knl = lp.make_kernel(ctx.devices[0],
"[K] -> {[i,j,k,e,m,o,gi]: 0<=i,j,k,m,o<%d and 0<=e<K and 0<=gi<6}" % n,
[
"CSE: ur(i,j,k) = sum_float32(@o, D[i,o]*u[e,o,j,k])",
"CSE: us(i,j,k) = sum_float32(@o, D[j,o]*u[e,i,o,k])",
"CSE: ut(i,j,k) = sum_float32(@o, D[k,o]*u[e,i,j,o])",
"lap[e,i,j,k] = "
" sum_float32(m, D[m,i]*(G[0,e,m,j,k]*ur(m,j,k) + G[1,e,m,j,k]*us(m,j,k) + G[2,e,m,j,k]*ut(m,j,k)))"
"+ sum_float32(m, D[m,j]*(G[1,e,i,m,k]*ur(i,m,k) + G[3,e,i,m,k]*us(i,m,k) + G[4,e,i,m,k]*ut(i,m,k)))"
"+ sum_float32(m, D[m,k]*(G[2,e,i,j,m]*ur(i,j,m) + G[4,e,i,j,m]*us(i,j,m) + G[5,e,i,j,m]*ut(i,j,m)))"
],
[
lp.GlobalArg("u", dtype, shape=field_shape, order=order),
lp.GlobalArg("lap", dtype, shape=field_shape, order=order),
lp.GlobalArg("G", dtype, shape=(6,)+field_shape, order=order),
lp.GlobalArg("D", dtype, shape=(n, n), order=order),
lp.ValueArg("K", np.int32, approximately=1000),
],
name="semlap", assumptions="K>=1")
knl = lp.realize_cse(knl, "ur", np.float32, ["k", "j", "m"])
knl = lp.realize_cse(knl, "us", np.float32, ["i", "m", "k"])
knl = lp.realize_cse(knl, "ut", np.float32, ["i", "j", "m"])
if 0:
seq_knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
seq_knl = lp.add_prefetch(seq_knl, "D", ["m", "j"])
seq_knl = lp.add_prefetch(seq_knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
else:
seq_knl = knl
knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
knl = lp.add_prefetch(knl, "D", ["m", "j"])
knl = lp.add_prefetch(knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
#knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
#print seq_knl
#print lp.preprocess_kernel(knl)
#1/0
knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
K = 1000
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
op_count=K*(n*n*n*n*2*3 + n*n*n*5*3 + n**4 * 2*3)/1e9,
op_label="GFlops",
parameters={"K": K}, print_seq_code=True)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def test_laplacian_lmem_ilp(ctx_factory):
# This does not lead to practical/runnable code (out of lmem), but it's an
# excellent stress test for the code generator. :)
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 8
from pymbolic import var
K_sym = var("K")
field_shape = (K_sym, n, n, n)
# K - run-time symbolic
knl = lp.make_kernel(ctx.devices[0],
"[K] -> {[i,j,k,e,m,o,gi]: 0<=i,j,k,m,o<%d and 0<=e<K }" % n,
[
"ur(i,j,k) := sum_float32(@o, D[i,o]*u[e,o,j,k])",
"us(i,j,k) := sum_float32(@o, D[j,o]*u[e,i,o,k])",
"ut(i,j,k) := sum_float32(@o, D[k,o]*u[e,i,j,o])",
"lap[e,i,j,k] = "
" sum_float32(m, D[m,i]*(G[0,e,m,j,k]*ur(m,j,k) + G[1,e,m,j,k]*us(m,j,k) + G[2,e,m,j,k]*ut(m,j,k)))"
"+ sum_float32(m, D[m,j]*(G[1,e,i,m,k]*ur(i,m,k) + G[3,e,i,m,k]*us(i,m,k) + G[4,e,i,m,k]*ut(i,m,k)))"
"+ sum_float32(m, D[m,k]*(G[2,e,i,j,m]*ur(i,j,m) + G[4,e,i,j,m]*us(i,j,m) + G[5,e,i,j,m]*ut(i,j,m)))"
],
[
lp.GlobalArg("u", dtype, shape=field_shape, order=order),
lp.GlobalArg("lap", dtype, shape=field_shape, order=order),
lp.GlobalArg("G", dtype, shape=(6,)+field_shape, order=order),
lp.GlobalArg("D", dtype, shape=(n, n), order=order),
lp.ValueArg("K", np.int32, approximately=1000),
],
name="semlap", assumptions="K>=1")
# Must act on u first, otherwise stencil becomes crooked and
# footprint becomes non-convex.
knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
knl = lp.add_prefetch(knl, "u", [1, 2, 3, "e_inner_inner"])
knl = lp.precompute(knl, "ur", np.float32, [0, 1, 2, "e_inner_inner"])
knl = lp.precompute(knl, "us", np.float32, [0, 1, 2, "e_inner_inner"])
knl = lp.precompute(knl, "ut", np.float32, [0, 1, 2, "e_inner_inner"])
knl = lp.add_prefetch(knl, "G", ["m", "i", "j", "k", "e_inner_inner"])
knl = lp.add_prefetch(knl, "D", ["m", "j"])
#print seq_knl
#1/0
knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
for knl in kernel_gen:
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
dtype = np.float32
ctx = ctx_factory()
order = "C"
N = 8
from pymbolic import var
K_sym = var("K")
field_shape = (K_sym, N, N, N)
# 1. direction-by-direction similarity transform on u
# 2. invert diagonal
# 3. transform back (direction-by-direction)
# K - run-time symbolic
# A. updated for CSE: notation.
# B. fixed temp indexing and C ordering
# load: 3+9 fields + 1/N D entry
# store: 3 fields
# perform: N*2*6 + 3*5 + 3*5 flops
# ratio: (12*N+30)/15 flops per 4 bytes on bus
# ~ 8.4 FLOPS per 4 bytes at N=8
# ~ 300 GFLOPS max on a 150GB/s device at N=8 if done perfectly
knl = lp.make_kernel(ctx.devices[0],
"[K] -> {[i,j,k,m,e]: 0<=i,j,k,m<%d AND 0<=e<K}" % N,
[
# differentiate u
"CSE: ur(i,j,k) = sum_float32(@m, D[i,m]*u[e,m,j,k])",
"CSE: us(i,j,k) = sum_float32(@m, D[j,m]*u[e,i,m,k])",
"CSE: ut(i,j,k) = sum_float32(@m, D[k,m]*u[e,i,j,m])",
# differentiate v
"CSE: vr(i,j,k) = sum_float32(@m, D[i,m]*v[e,m,j,k])",
"CSE: vs(i,j,k) = sum_float32(@m, D[j,m]*v[e,i,m,k])",
"CSE: vt(i,j,k) = sum_float32(@m, D[k,m]*v[e,i,j,m])",
# differentiate w
"CSE: wr(i,j,k) = sum_float32(@m, D[i,m]*w[e,m,j,k])",
"CSE: ws(i,j,k) = sum_float32(@m, D[j,m]*w[e,i,m,k])",
"CSE: wt(i,j,k) = sum_float32(@m, D[k,m]*w[e,i,j,m])",
# find velocity in (r,s,t) coordinates
# CSE?
"CSE: Vr(i,j,k) = G[0,e,i,j,k]*u[e,i,j,k] + G[1,e,i,j,k]*v[e,i,j,k] + G[2,e,i,j,k]*w[e,i,j,k]",
"CSE: Vs(i,j,k) = G[3,e,i,j,k]*u[e,i,j,k] + G[4,e,i,j,k]*v[e,i,j,k] + G[5,e,i,j,k]*w[e,i,j,k]",
"CSE: Vt(i,j,k) = G[6,e,i,j,k]*u[e,i,j,k] + G[7,e,i,j,k]*v[e,i,j,k] + G[8,e,i,j,k]*w[e,i,j,k]",
# form nonlinear term on integration nodes
"Nu[e,i,j,k] = Vr(i,j,k)*ur(i,j,k)+Vs(i,j,k)*us(i,j,k)+Vt(i,j,k)*ut(i,j,k)",
"Nv[e,i,j,k] = Vr(i,j,k)*vr(i,j,k)+Vs(i,j,k)*vs(i,j,k)+Vt(i,j,k)*vt(i,j,k)",
"Nw[e,i,j,k] = Vr(i,j,k)*wr(i,j,k)+Vs(i,j,k)*ws(i,j,k)+Vt(i,j,k)*wt(i,j,k)",
],
[
lp.GlobalArg("u", dtype, shape=field_shape, order=order),
lp.GlobalArg("v", dtype, shape=field_shape, order=order),
lp.GlobalArg("w", dtype, shape=field_shape, order=order),
lp.GlobalArg("Nu", dtype, shape=field_shape, order=order),
lp.GlobalArg("Nv", dtype, shape=field_shape, order=order),
lp.GlobalArg("Nw", dtype, shape=field_shape, order=order),
lp.GlobalArg("G", dtype, shape=(9,)+field_shape, order=order),
lp.GlobalArg("D", dtype, shape=(N, N), order=order),
lp.ValueArg("K", np.int32, approximately=1000),
knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)
K = 1000
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
op_count=0,
op_label="GFlops",
parameters={"K": K}, print_seq_code=True,)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def test_advect_dealias(ctx_factory):
1/0 # not ready
dtype = np.float32
ctx = ctx_factory()
order = "C"
N = 8
M = 8
from pymbolic import var
K_sym = var("K")
field_shape = (N, N, N, K_sym)
interim_field_shape = (M, M, M, K_sym)
# 1. direction-by-direction similarity transform on u
# 2. invert diagonal
# 3. transform back (direction-by-direction)
# K - run-time symbolic
knl = lp.make_kernel(ctx.devices[0],
"[K] -> {[i,ip,j,jp,k,kp,m,e]: 0<=i,j,k,m<%d AND 0<=o,ip,jp,kp<%d 0<=e<K}" %M %N
[
# interpolate u to integration nodes
"CSE: u0[i,jp,kp,e] = sum_float32(@o, I[i,o]*u[o,jp,kp,e])",
"CSE: u1[i,j,kp,e] = sum_float32(@o, I[j,o]*u0[i,o,kp,e])",
"CSE: Iu[i,j,k,e] = sum_float32(@o, I[k,o]*u1[i,j,o,e])",
# differentiate u on integration nodes
"CSE: Iur[i,j,k,e] = sum_float32(@m, D[i,m]*Iu[m,j,k,e])",
"CSE: Ius[i,j,k,e] = sum_float32(@m, D[j,m]*Iu[i,m,k,e])",
"CSE: Iut[i,j,k,e] = sum_float32(@m, D[k,m]*Iu[i,j,m,e])",
# interpolate v to integration nodes
"CSE: v0[i,jp,kp,e] = sum_float32(@o, I[i,o]*v[o,jp,kp,e])",
"CSE: v1[i,j,kp,e] = sum_float32(@o, I[j,o]*v0[i,o,kp,e])",
"CSE: Iv[i,j,k,e] = sum_float32(@o, I[k,o]*v1[i,j,o,e])",
# differentiate v on integration nodes
"CSE: Ivr[i,j,k,e] = sum_float32(@m, D[i,m]*Iv[m,j,k,e])",
"CSE: Ivs[i,j,k,e] = sum_float32(@m, D[j,m]*Iv[i,m,k,e])",
"CSE: Ivt[i,j,k,e] = sum_float32(@m, D[k,m]*Iv[i,j,m,e])",
# interpolate w to integration nodes
"CSE: w0[i,jp,kp,e] = sum_float32(@o, I[i,o]*w[o,jp,kp,e])",
"CSE: w1[i,j,kp,e] = sum_float32(@o, I[j,o]*w0[i,o,kp,e])",
"CSE: Iw[i,j,k,e] = sum_float32(@o, I[k,o]*w1[i,j,o,e])",
# differentiate v on integration nodes
"CSE: Iwr[i,j,k,e] = sum_float32(@m, D[i,m]*Iw[m,j,k,e])",
"CSE: Iws[i,j,k,e] = sum_float32(@m, D[j,m]*Iw[i,m,k,e])",
"CSE: Iwt[i,j,k,e] = sum_float32(@m, D[k,m]*Iw[i,j,m,e])",
# find velocity in (r,s,t) coordinates
# QUESTION: should I use CSE here ?
"CSE: Vr[i,j,k,e] = G[i,j,k,0,e]*Iu[i,j,k,e] + G[i,j,k,1,e]*Iv[i,j,k,e] + G[i,j,k,2,e]*Iw[i,j,k,e]",
"CSE: Vs[i,j,k,e] = G[i,j,k,3,e]*Iu[i,j,k,e] + G[i,j,k,4,e]*Iv[i,j,k,e] + G[i,j,k,5,e]*Iw[i,j,k,e]",
"CSE: Vt[i,j,k,e] = G[i,j,k,6,e]*Iu[i,j,k,e] + G[i,j,k,7,e]*Iv[i,j,k,e] + G[i,j,k,8,e]*Iw[i,j,k,e]",
# form nonlinear term on integration nodes
# QUESTION: should I use CSE here ?
"<SE: Nu[i,j,k,e] = Vr[i,j,k,e]*Iur[i,j,k,e]+Vs[i,j,k,e]*Ius[i,j,k,e]+Vt[i,j,k,e]*Iut[i,j,k,e]",
"<SE: Nv[i,j,k,e] = Vr[i,j,k,e]*Ivr[i,j,k,e]+Vs[i,j,k,e]*Ivs[i,j,k,e]+Vt[i,j,k,e]*Ivt[i,j,k,e]",
"<SE: Nw[i,j,k,e] = Vr[i,j,k,e]*Iwr[i,j,k,e]+Vs[i,j,k,e]*Iws[i,j,k,e]+Vt[i,j,k,e]*Iwt[i,j,k,e]",
# L2 project Nu back to Lagrange basis
"CSE: Nu2[ip,j,k,e] = sum_float32(@m, V[ip,m]*Nu[m,j,k,e])",
"CSE: Nu1[ip,jp,k,e] = sum_float32(@m, V[jp,m]*Nu2[ip,m,k,e])",
"INu[ip,jp,kp,e] = sum_float32(@m, V[kp,m]*Nu1[ip,jp,m,e])",
# L2 project Nv back to Lagrange basis
"CSE: Nv2[ip,j,k,e] = sum_float32(@m, V[ip,m]*Nv[m,j,k,e])",
"CSE: Nv1[ip,jp,k,e] = sum_float32(@m, V[jp,m]*Nv2[ip,m,k,e])",
"INv[ip,jp,kp,e] = sum_float32(@m, V[kp,m]*Nv1[ip,jp,m,e])",
# L2 project Nw back to Lagrange basis
"CSE: Nw2[ip,j,k,e] = sum_float32(@m, V[ip,m]*Nw[m,j,k,e])",
"CSE: Nw1[ip,jp,k,e] = sum_float32(@m, V[jp,m]*Nw2[ip,m,k,e])",
"INw[ip,jp,kp,e] = sum_float32(@m, V[kp,m]*Nw1[ip,jp,m,e])",
],
[
lp.GlobalArg("u", dtype, shape=field_shape, order=order),
lp.GlobalArg("v", dtype, shape=field_shape, order=order),
lp.GlobalArg("w", dtype, shape=field_shape, order=order),
lp.GlobalArg("INu", dtype, shape=field_shape, order=order),
lp.GlobalArg("INv", dtype, shape=field_shape, order=order),
lp.GlobalArg("INw", dtype, shape=field_shape, order=order),
lp.GlobalArg("D", dtype, shape=(M,M), order=order),
lp.GlobalArg("I", dtype, shape=(M, N), order=order),
lp.GlobalArg("V", dtype, shape=(N, M), order=order),
lp.ValueArg("K", np.int32, approximately=1000),
],
name="sem_advect", assumptions="K>=1")
knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
#1/0
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)
K = 1000
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
op_count=0,
op_label="GFlops",
parameters={"K": K}, print_seq_code=True,)
def test_interp_diff(ctx_factory):
1/0 # not ready
dtype = np.float32
ctx = ctx_factory()
order = "C"
N = 8
M = 8
from pymbolic import var
K_sym = var("K")
field_shape = (N, N, N, K_sym)
interim_field_shape = (M, M, M, K_sym)
# 1. direction-by-direction similarity transform on u
# 2. invert diagonal
# 3. transform back (direction-by-direction)
# K - run-time symbolic
knl = lp.make_kernel(ctx.devices[0],
"[K] -> {[i,ip,j,jp,k,kp,e]: 0<=i,j,k<%d AND 0<=ip,jp,kp<%d 0<=e<K}" %M %N
[
"[|i,jp,kp] <float32> u1[i ,jp,kp,e] = sum_float32(ip, I[i,ip]*u [ip,jp,kp,e])",
"[|i,j ,kp] <float32> u2[i ,j ,kp,e] = sum_float32(jp, I[j,jp]*u1[i ,jp,kp,e])",
"[|i,j ,k ] <float32> u3[i ,j ,k ,e] = sum_float32(kp, I[k,kp]*u2[i ,j ,kp,e])",
"[|i,j ,k ] <float32> Pu[i ,j ,k ,e] = P[i,j,k,e]*u3[i,j,k,e]",
"[|i,j ,kp] <float32> Pu3[i ,j ,kp,e] = sum_float32(k, V[kp,k]*Pu[i ,j , k,e])",
"[|i,jp,kp] <float32> Pu2[i ,jp,kp,e] = sum_float32(j, V[jp,j]*Pu[i ,j ,kp,e])",
"Pu[ip,jp,kp,e] = sum_float32(i, V[ip,i]*Pu[i ,jp,kp,e])",
],
[
lp.GlobalArg("u", dtype, shape=field_shape, order=order),
lp.GlobalArg("P", dtype, shape=interim_field_shape, order=order),
lp.GlobalArg("I", dtype, shape=(M, N), order=order),
lp.GlobalArg("V", dtype, shape=(N, M), order=order),
lp.GlobalArg("Pu", dtype, shape=field_shape, order=order),
lp.ValueArg("K", np.int32, approximately=1000),
],
name="sem_lap_precon", assumptions="K>=1")
knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
#1/0
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
op_count=0,
op_label="GFlops",
parameters={"K": K}, print_seq_code=True,)
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])