Newer
Older
from __future__ import division, absolute_import, print_function
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import six
from six.moves import range
import numpy as np
import loopy as lp
import pyopencl as cl
Andreas Klöckner
committed
import pyopencl.clmath # noqa
logger = logging.getLogger(__name__)
try:
import faulthandler
except ImportError:
pass
else:
faulthandler.enable()
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
__all__ = [
"pytest_generate_tests",
"cl" # 'cl.create_some_context'
Andreas Klöckner
committed
def test_complicated_subst(ctx_factory):
Andreas Klöckner
committed
knl = lp.make_kernel(
Andreas Klöckner
committed
"{[i]: 0<=i<n}",
"""
f(x) := x*a[x]
g(x) := 12 + f(x)
h(x) := 1 + g(x) + 20*g$two(x)
a[i] = h$one(i) * h$two(i)
Andreas Klöckner
committed
knl = lp.expand_subst(knl, "... > id:h and tag:two > id:g and tag:two")
Andreas Klöckner
committed
Andreas Klöckner
committed
Andreas Klöckner
committed
for letter, how_many in [
("f", 1),
("g", 1),
("h", 2)
]:
substs_with_letter = sum(1 for k in sr_keys if k.startswith(letter))
assert substs_with_letter == how_many
def test_extract_subst(ctx_factory):
knl = lp.make_kernel(
"{[i]: 0<=i<n}",
"""
a[i] = 23*b[i]**2 + 25*b[i]**2
""")
knl = lp.extract_subst(knl, "bsquare", "alpha*b[i]**2", "alpha")
print(knl)
from loopy.symbolic import parse
insn, = knl.instructions
assert insn.expression == parse("bsquare(23) + bsquare(25)")
def test_type_inference_no_artificial_doubles(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i]: 0<=i<n}",
"""
<> bb = a[i] - b[i]
c[i] = bb
""",
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.GlobalArg("c", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1")
knl = lp.preprocess_kernel(knl, ctx.devices[0])
for k in lp.generate_loop_schedules(knl):
code = lp.generate_code(k)
assert "double" not in code
def test_sized_and_complex_literals(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i]: 0<=i<n}",
"""
<> aa = 5jf
<> bb = 5j
a[i] = imag(aa)
b[i] = imag(bb)
c[i] = 5f
""",
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.GlobalArg("c", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1")
lp.auto_test_vs_ref(knl, ctx, knl, parameters=dict(n=5))
def test_assume(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i]: 0<=i<n}",
"a[i] = a[i] + 1",
[lp.GlobalArg("a", np.float32, shape="n"), "..."])
knl = lp.split_iname(knl, "i", 16)
knl = lp.set_loop_priority(knl, "i_outer,i_inner")
knl = lp.assume(knl, "n mod 16 = 0")
knl = lp.assume(knl, "n > 10")
knl = lp.preprocess_kernel(knl, ctx.devices[0])
kernel_gen = lp.generate_loop_schedules(knl)
for gen_knl in kernel_gen:
assert "if" not in compiled.get_code()
def test_simple_side_effect(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i,j]: 0<=i,j<100}",
"""
a[i] = a[i] + 1
""",
[lp.GlobalArg("a", np.float32, shape=(100,))]
)
knl = lp.preprocess_kernel(knl, ctx.devices[0])
kernel_gen = lp.generate_loop_schedules(knl)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
def test_nonsense_reduction(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i]: 0<=i<100}",
"""
a[i] = sum(i, 2)
""",
[lp.GlobalArg("a", np.float32, shape=(100,))]
)
import pytest
with pytest.raises(RuntimeError):
knl = lp.preprocess_kernel(knl, ctx.devices[0])
def test_owed_barriers(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i]: 0<=i<100}",
[
Andreas Klöckner
committed
"<float32> z[i] = a[i]"
],
[lp.GlobalArg("a", np.float32, shape=(100,))]
Andreas Klöckner
committed
knl = lp.tag_inames(knl, dict(i="l.0"))
knl = lp.preprocess_kernel(knl, ctx.devices[0])
kernel_gen = lp.generate_loop_schedules(knl)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
Andreas Klöckner
committed
def test_wg_too_small(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
Andreas Klöckner
committed
"{[i]: 0<=i<100}",
[
Andreas Klöckner
committed
"<float32> z[i] = a[i] {id=copy}"
Andreas Klöckner
committed
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
Andreas Klöckner
committed
local_sizes={0: 16})
Andreas Klöckner
committed
knl = lp.tag_inames(knl, dict(i="l.0"))
knl = lp.preprocess_kernel(knl, ctx.devices[0])
Andreas Klöckner
committed
kernel_gen = lp.generate_loop_schedules(knl)
Andreas Klöckner
committed
import pytest
Andreas Klöckner
committed
for gen_knl in kernel_gen:
Andreas Klöckner
committed
with pytest.raises(RuntimeError):
lp.CompiledKernel(ctx, gen_knl).get_code()
Andreas Klöckner
committed
def test_join_inames(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i,j]: 0<=i,j<16}",
[
"b[i,j] = 2*a[i,j]"
],
[
lp.GlobalArg("a", np.float32, shape=(16, 16,)),
lp.GlobalArg("b", np.float32, shape=(16, 16,))
],
)
ref_knl = knl
knl = lp.add_prefetch(knl, "a", sweep_inames=["i", "j"])
knl = lp.join_inames(knl, ["a_dim_0", "a_dim_1"])
lp.auto_test_vs_ref(ref_knl, ctx, knl)
def test_divisibility_assumption(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"[n] -> {[i]: 0<=i<n}",
[
"b[i] = 2*a[i]"
],
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1 and (exists zz: n = 16*zz)")
ref_knl = knl
knl = lp.split_iname(knl, "i", 16)
knl = lp.preprocess_kernel(knl, ctx.devices[0])
for k in lp.generate_loop_schedules(knl):
code = lp.generate_code(k)
assert "if" not in code
lp.auto_test_vs_ref(ref_knl, ctx, knl,
parameters={"n": 16**3})
def test_multi_cse(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i]: 0<=i<100}",
[
Andreas Klöckner
committed
"<float32> z[i] = a[i] + a[i]**2"
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
local_sizes={0: 16})
knl = lp.split_iname(knl, "i", 16, inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", [])
knl = lp.preprocess_kernel(knl, ctx.devices[0])
kernel_gen = lp.generate_loop_schedules(knl)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
def test_stencil(ctx_factory):
ctx = ctx_factory()
# n=32 causes corner case behavior in size calculations for temprorary (a
# non-unifiable, two-constant-segments PwAff as the base index)
n = 256
knl = lp.make_kernel(
"{[i,j]: 0<= i,j < %d}" % n,
"a_offset(ii, jj) := a[ii+1, jj+1]",
"z[i,j] = -2*a_offset(i,j)"
" + a_offset(i,j-1)"
" + a_offset(i,j+1)"
" + a_offset(i-1,j)"
" + a_offset(i+1,j)"
lp.GlobalArg("a", np.float32, shape=(n+2, n+2,)),
lp.GlobalArg("z", np.float32, shape=(n+2, n+2,))
def variant_1(knl):
knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"])
knl = lp.set_loop_priority(knl, ["a_dim_0_outer", "a_dim_1_outer"])
def variant_2(knl):
knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"],
fetch_bounding_box=True)
knl = lp.set_loop_priority(knl, ["a_dim_0_outer", "a_dim_1_outer"])
for variant in [
#variant_1,
variant_2,
]:
lp.auto_test_vs_ref(ref_knl, ctx, variant(knl),
op_count=[n*n], op_label=["cells"])
def test_stencil_with_overfetch(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i,j]: 0<= i,j < n}",
[
"a_offset(ii, jj) := a[ii+2, jj+2]",
"z[i,j] = -2*a_offset(i,j)"
" + a_offset(i,j-1)"
" + a_offset(i,j+1)"
" + a_offset(i-1,j)"
" + a_offset(i+1,j)"
" + a_offset(i,j-2)"
" + a_offset(i,j+2)"
" + a_offset(i-2,j)"
" + a_offset(i+2,j)"
if ctx.devices[0].platform.name == "Portable Computing Language":
# https://github.com/pocl/pocl/issues/205
pytest.skip("takes very long to compile on pocl")
knl = lp.add_and_infer_dtypes(knl, dict(a=np.float32))
ref_knl = knl
def variant_overfetch(knl):
knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1",
slabs=(1, 1))
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0",
slabs=(1, 1))
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"],
fetch_bounding_box=True)
knl = lp.set_loop_priority(knl, ["a_dim_0_outer", "a_dim_1_outer"])
return knl
for variant in [variant_overfetch]:
n = 200
lp.auto_test_vs_ref(ref_knl, ctx, variant(knl),
op_count=[n*n], parameters=dict(n=n), op_label=["cells"])
def test_eq_constraint(ctx_factory):
logging.basicConfig(level=logging.INFO)
ctx = ctx_factory()
knl = lp.make_kernel(
"{[i,j]: 0<= i,j < 32}",
[
"a[i] = b[i]"
],
[
lp.GlobalArg("a", np.float32, shape=(1000,)),
lp.GlobalArg("b", np.float32, shape=(1000,))
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0")
knl = lp.split_iname(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
knl = lp.preprocess_kernel(knl, ctx.devices[0])
kernel_gen = lp.generate_loop_schedules(knl)
for knl in kernel_gen:
def test_argmax(ctx_factory):
logging.basicConfig(level=logging.INFO)
dtype = np.dtype(np.float32)
ctx = ctx_factory()
order = "C"
n = 10000
knl = lp.make_kernel(
"{[i]: 0<=i<%d}" % n,
[
"<> result = argmax(i, fabs(a[i]))",
"max_idx = result.index",
"max_val = result.value",
],
[
lp.GlobalArg("a", dtype, shape=(n,), order=order),
lp.GlobalArg("max_idx", np.int32, shape=(), order=order),
lp.GlobalArg("max_val", dtype, shape=(), order=order),
])
a = np.random.randn(10000).astype(dtype)
cknl = lp.CompiledKernel(ctx, knl)
evt, (max_idx, max_val) = cknl(queue, a=a, out_host=True)
assert max_val == np.max(np.abs(a))
assert max_idx == np.where(np.abs(a) == max_val)[-1]
def make_random_value():
from random import randrange, uniform
v = randrange(3)
if v == 0:
while True:
z = randrange(-1000, 1000)
if z:
return z
elif v == 1:
return uniform(-10, 10)
else:
cval = uniform(-10, 10) + 1j*uniform(-10, 10)
if randrange(0, 2) == 0:
return np.complex128(cval)
else:
return np.complex128(cval)
def make_random_expression(var_values, size):
from random import randrange
import pymbolic.primitives as p
v = randrange(1500)
size[0] += 1
if v < 500 and size[0] < 40:
term_count = randrange(2, 5)
if randrange(2) < 1:
cls = p.Sum
else:
cls = p.Product
return cls(tuple(
make_random_expression(var_values, size)
for i in range(term_count)))
elif v < 750:
return make_random_value()
elif v < 1000:
var_name = "var_%d" % len(var_values)
assert var_name not in var_values
var_values[var_name] = make_random_value()
return p.Variable(var_name)
elif v < 1250:
# Cannot use '-' because that destroys numpy constants.
return p.Sum((
make_random_expression(var_values, size),
- make_random_expression(var_values, size)))
elif v < 1500:
# Cannot use '/' because that destroys numpy constants.
return p.Quotient(
make_random_expression(var_values, size),
make_random_expression(var_values, size))
def generate_random_fuzz_examples(count):
size = [0]
var_values = {}
expr = make_random_expression(var_values, size)
yield expr, var_values
def test_fuzz_code_generator(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
#from expr_fuzz import get_fuzz_examples
#for expr, var_values in get_fuzz_examples():
for expr, var_values in generate_random_fuzz_examples(50):
from pymbolic import evaluate
try:
true_value = evaluate(expr, var_values)
except ZeroDivisionError:
continue
def get_dtype(x):
if isinstance(x, (complex, np.complexfloating)):
return np.complex128
else:
return np.float64
knl = lp.make_kernel("{ : }",
[lp.GlobalArg("value", np.complex128, shape=())]
+ [
])
ck = lp.CompiledKernel(ctx, knl)
evt, (lp_value,) = ck(queue, out_host=True, **var_values)
err = abs(true_value-lp_value)/abs(true_value)
if abs(err) > 1e-10:
print(80*"-")
print("WRONG: rel error=%g" % err)
print("true=%r" % true_value)
print("loopy=%r" % lp_value)
print(80*"-")
print(80*"-")
print(var_values)
print(80*"-")
print(repr(expr))
print(80*"-")
print(expr)
print(80*"-")
Andreas Klöckner
committed
def test_empty_reduction(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(
Andreas Klöckner
committed
[
"{[i]: 0<=i<20}",
Andreas Klöckner
committed
],
[
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, (20,)),
])
cknl = lp.CompiledKernel(ctx, knl)
evt, (a,) = cknl(queue)
assert (a.get() == 0).all()
Andreas Klöckner
committed
def test_nested_dependent_reduction(ctx_factory):
Andreas Klöckner
committed
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(
Andreas Klöckner
committed
[
Andreas Klöckner
committed
"{[j]: 0<=j<i+sumlen}"
],
[
"<> sumlen = l[i]",
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("l", np.int32, ("n",)),
Andreas Klöckner
committed
])
cknl = lp.CompiledKernel(ctx, knl)
n = 330
l = np.arange(n, dtype=np.int32)
evt, (a,) = cknl(queue, l=l, n=n, out_host=True)
tgt_result = (2*l-1)*2*l/2
assert (a == tgt_result).all()
def test_multi_nested_dependent_reduction(ctx_factory):
dtype = np.dtype(np.int32)
ctx = ctx_factory()
knl = lp.make_kernel(
[
"{[itgt]: 0 <= itgt < ntgts}",
"{[isrc_box]: 0 <= isrc_box < nboxes}",
"{[isrc]: 0 <= isrc < npart}"
],
[
"<> npart = nparticles_per_box[isrc_box]",
"a[itgt] = sum((isrc_box, isrc), 1)",
],
[
lp.ValueArg("n", np.int32),
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("nparticles_per_box", np.int32, ("nboxes",)),
lp.ValueArg("ntgts", np.int32),
lp.ValueArg("nboxes", np.int32),
],
assumptions="ntgts>=1")
cknl = lp.CompiledKernel(ctx, knl)
# FIXME: Actually test functionality.
def test_recursive_nested_dependent_reduction(ctx_factory):
dtype = np.dtype(np.int32)
ctx = ctx_factory()
knl = lp.make_kernel(
[
"{[itgt]: 0 <= itgt < ntgts}",
"{[isrc_box]: 0 <= isrc_box < nboxes}",
"{[isrc]: 0 <= isrc < npart}"
],
[
"<> npart = nparticles_per_box[isrc_box]",
"<> boxsum = sum(isrc, isrc+isrc_box+itgt)",
"a[itgt] = sum(isrc_box, boxsum)",
],
[
lp.ValueArg("n", np.int32),
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("nparticles_per_box", np.int32, ("nboxes",)),
lp.ValueArg("ntgts", np.int32),
lp.ValueArg("nboxes", np.int32),
],
assumptions="ntgts>=1")
cknl = lp.CompiledKernel(ctx, knl)
# FIXME: Actually test functionality.
Andreas Klöckner
committed
def test_dependent_loop_bounds(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(
Andreas Klöckner
committed
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
[
"<> row_len = a_rowstarts[i+1] - a_rowstarts[i]",
Andreas Klöckner
committed
"a_sum[i] = sum(jj, a_values[[a_rowstarts[i]+jj]])",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_rowstarts", np.int32, shape=lp.auto),
lp.GlobalArg("a_indices", np.int32, shape=lp.auto),
Andreas Klöckner
committed
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("a_sum", dtype, shape=lp.auto),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
cknl = lp.CompiledKernel(ctx, knl)
print("---------------------------------------------------")
print(cknl.get_highlighted_code())
print("---------------------------------------------------")
Andreas Klöckner
committed
def test_dependent_loop_bounds_2(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_start = a_rowstarts[i]",
"<> row_len = a_rowstarts[i+1] - row_start",
Andreas Klöckner
committed
"ax[i] = sum(jj, a_values[[row_start+jj]])",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_rowstarts", np.int32, shape=lp.auto),
lp.GlobalArg("a_indices", np.int32, shape=lp.auto),
lp.GlobalArg("a_values", dtype, strides=(1,)),
lp.GlobalArg("ax", dtype, shape=lp.auto),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
cknl = lp.CompiledKernel(ctx, knl)
print("---------------------------------------------------")
print(cknl.get_highlighted_code())
print("---------------------------------------------------")
Andreas Klöckner
committed
def test_dependent_loop_bounds_3(ctx_factory):
# The point of this test is that it shows a dependency between
# domains that is exclusively mediated by the row_len temporary.
# It also makes sure that row_len gets read before any
# conditionals use it.
Andreas Klöckner
committed
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_len = a_row_lengths[i]",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_row_lengths", np.int32, shape=lp.auto),
Andreas Klöckner
committed
lp.GlobalArg("a", dtype, shape=("n,n"), order="C"),
Andreas Klöckner
committed
])
assert knl.parents_per_domain()[1] == 0
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
Andreas Klöckner
committed
cknl = lp.CompiledKernel(ctx, knl)
print("---------------------------------------------------")
print(cknl.get_highlighted_code())
print("---------------------------------------------------")
Andreas Klöckner
committed
knl_bad = lp.split_iname(knl, "jj", 128, outer_tag="g.1",
knl = lp.preprocess_kernel(knl, ctx.devices[0])
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl_bad))
def test_independent_multi_domain(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(
[
"{[i]: 0<=i<n}",
"{[j]: 0<=j<n}",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
lp.GlobalArg("b", dtype, shape=("n"), order="C"),
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0",
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0",
assert knl.parents_per_domain() == 2*[None]
n = 50
cknl = lp.CompiledKernel(ctx, knl)
evt, (a, b) = cknl(queue, n=n, out_host=True)
assert a.shape == (50,)
assert b.shape == (50,)
def test_bare_data_dependency(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(
[
"[znirp] -> {[i]: 0<=i<znirp}",
],
[
"<> znirp = n",
"a[i] = 1",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
])
cknl = lp.CompiledKernel(ctx, knl)
n = 20000
evt, (a,) = cknl(queue, n=n, out_host=True)
assert a.shape == (n,)
assert (a == 1).all()
Andreas Klöckner
committed
def test_equality_constraints(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
knl = lp.make_kernel([
"[n] -> {[i,j]: 0<=i,j<n }",
"{[k]: k =i+5 and k < n}",
],
"b[i,k] = 22 {dep=set_all}",
lp.GlobalArg("a,b", dtype, shape="n, n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
name="equality_constraints", assumptions="n>=1")
seq_knl = knl
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
#print(knl)
#print(knl.domains[0].detect_equalities())
lp.auto_test_vs_ref(seq_knl, ctx, knl,
parameters=dict(n=n), print_ref_code=True)
def test_stride(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel([
"{[i]: 0<=i<n and (exists l: i = 2*l)}",
],
[
"a[i] = 5",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
lp.auto_test_vs_ref(seq_knl, ctx, knl,
def test_domain_dependency_via_existentially_quantified_variable(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel([
"{[i]: 0<=i<n }",
"{[k]: k=i and (exists l: k = 2*l) }",
],
[
"a[i] = 5 {id=set}",
"b[k] = 6 {dep=set}",
lp.GlobalArg("a,b", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
lp.auto_test_vs_ref(seq_knl, ctx, knl,
def test_double_sum(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
n = 20
knl = lp.make_kernel(
"{[i,j]: 0<=i,j<n }",
[
"a = sum((i,j), i*j)",
"b = sum(i, sum(j, i*j))",
],
assumptions="n>=1")
cknl = lp.CompiledKernel(ctx, knl)
evt, (a, b) = cknl(queue, n=n)
assert a.get() == ref
assert b.get() == ref
# {{{ test race detection
@pytest.mark.skipif("sys.version_info < (2,6)")
def test_ilp_write_race_detection_global(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
"[n] -> {[i,j]: 0<=i,j<n }",
[
Andreas Klöckner
committed
"a[i] = 5+i+j",
],
[
lp.GlobalArg("a", np.float32),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
Andreas Klöckner
committed
knl = lp.tag_inames(knl, dict(j="ilp"))
knl = lp.preprocess_kernel(knl, ctx.devices[0])
Andreas Klöckner
committed
with lp.CacheMode(False):
from loopy.diagnostic import WriteRaceConditionWarning
from warnings import catch_warnings
with catch_warnings(record=True) as warn_list:
list(lp.generate_loop_schedules(knl))
assert any(isinstance(w.message, WriteRaceConditionWarning)
for w in warn_list)
def test_ilp_write_race_avoidance_local(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(
Andreas Klöckner
committed
"<> a[i] = 5+i+j",