diff --git a/pyopencl/clrandom.py b/pyopencl/clrandom.py index 225705c2fee68fc6f1acb0a99f7344eb7565ecd1..a30ffaf9391e1955a419212d7468f25ad228ea50 100644 --- a/pyopencl/clrandom.py +++ b/pyopencl/clrandom.py @@ -63,6 +63,7 @@ for some documentation if you're planning on using Random123 directly. import pyopencl as cl import pyopencl.array as cl_array +import pyopencl.cltypes as cltypes from pyopencl.tools import first_arg_dependent_memoize from pytools import memoize_method @@ -218,13 +219,13 @@ class RanluxGenerator(object): bits = 32 c_type = "float" rng_expr = "(shift + scale * gen)" - elif dtype == cl_array.vec.float2: + elif dtype == cltypes.float2: bits = 32 c_type = "float" rng_expr = "(shift + scale * gen)" size_multiplier = 2 arg_dtype = np.float32 - elif dtype in [cl_array.vec.float3, cl_array.vec.float4]: + elif dtype in [cltypes.float3, cltypes.float4]: bits = 32 c_type = "float" rng_expr = "(shift + scale * gen)" @@ -475,9 +476,9 @@ class Random123GeneratorBase(object): for dist in ["normal", "uniform"] for cmp_dtype in [ np.float32, - cl.array.vec.float2, - cl.array.vec.float3, - cl.array.vec.float4, + cltypes.float2, + cltypes.float3, + cltypes.float4, ]]: c_type = "float" scale_const = "((float) %r)" % (1/2**32) @@ -493,7 +494,7 @@ class Random123GeneratorBase(object): counter_multiplier = 1 arg_dtype = np.float32 try: - _, size_multiplier = cl.array.vec.type_to_scalar_and_count[dtype] + _, size_multiplier = cltypes.vec_type_to_scalar_and_count[dtype] except KeyError: pass