diff --git a/test/test_transform.py b/test/test_transform.py index ccbbd3da0c61f491ff43a32fe2a7a19f8ec55a9d..0e10db362f36b7fc258059c2ec7ed1a344b97212 100644 --- a/test/test_transform.py +++ b/test/test_transform.py @@ -96,13 +96,28 @@ def test_to_batched(ctx_factory): knl = lp.make_kernel( ''' { [i,j]: 0<=i,j<n } ''', ''' out[i] = sum(j, a[i,j]*x[j])''') + knl = lp.add_and_infer_dtypes(knl, dict(out=np.float32, + x=np.float32, + a=np.float32)) bknl = lp.to_batched(knl, "nbatches", "out,x") - a = np.random.randn(5, 5) - x = np.random.randn(7, 5) + ref_knl = lp.make_kernel( + ''' { [i,j,k]: 0<=i,j<n and 0<=k<nbatches} ''', + '''out[k, i] = sum(j, a[i,j]*x[k, j])''') + ref_knl = lp.add_and_infer_dtypes(ref_knl, dict(out=np.float32, + x=np.float32, + a=np.float32)) - bknl(queue, a=a, x=x) + a = np.random.randn(5, 5).astype(np.float32) + x = np.random.randn(7, 5).astype(np.float32) + + # Running both the kernels + evt, (out1, ) = bknl(queue, a=a, x=x, n=5, nbatches=7) + evt, (out2, ) = ref_knl(queue, a=a, x=x, n=5, nbatches=7) + + # checking that the outputs are same + assert np.linalg.norm(out1-out2) < 1e-15 def test_to_batched_temp(ctx_factory): @@ -130,9 +145,13 @@ def test_to_batched_temp(ctx_factory): bknl = lp.to_batched(knl, "nbatches", "out,x") bref_knl = lp.to_batched(ref_knl, "nbatches", "out,x") + # checking that cnst is not being bathced + assert bknl.temporary_variables['cnst'].shape == () + a = np.random.randn(5, 5) x = np.random.randn(7, 5) + # Checking that the program compiles and the logic is correct lp.auto_test_vs_ref( bref_knl, ctx, bknl, parameters=dict(a=a, x=x, n=5, nbatches=7))