Newer
Older
#!/usr/bin/env python
# -*- coding: latin-1 -*-
def get_config_schema():
from aksetup_helper import ConfigSchema, Option, \
IncludeDir, LibraryDir, Libraries, BoostLibraries, \
Switch, StringListOption, make_boost_base_options
return ConfigSchema(make_boost_base_options() + [
BoostLibraries("python"),
BoostLibraries("thread"),
Switch("CL_TRACE", False, "Enable OpenCL API tracing"),
Switch("SHIPPED_CL_HEADERS", False, "Use shipped OpenCL headers"),
IncludeDir("CL", []),
LibraryDir("CL", []),
Libraries("CL", ["OpenCL"]),
StringListOption("CXXFLAGS", [],
help="Any extra C++ compiler options to include"),
StringListOption("LDFLAGS", [],
help="Any extra linker options to include"),
])
def main():
import glob
from aksetup_helper import hack_distutils, get_config, setup, \
NumpyExtension
hack_distutils()
conf = get_config(get_config_schema())
LIBRARY_DIRS = conf["BOOST_LIB_DIR"]
LIBRARIES = conf["BOOST_PYTHON_LIBNAME"] + conf["BOOST_THREAD_LIBNAME"]
from os.path import dirname, join, normpath
EXTRA_DEFINES = { }
EXTRA_INCLUDE_DIRS = []
EXTRA_LIBRARY_DIRS = []
EXTRA_LIBRARIES = []
if conf["CL_TRACE"]:
EXTRA_DEFINES["CLPP_TRACE_CL"] = 1
INCLUDE_DIRS = ['src/cpp'] + conf["BOOST_INC_DIR"] + conf["CL_INC_DIR"]
if conf["SHIPPED_CL_HEADERS"]:
INCLUDE_DIRS.append('src/cl')
if 'darwin' in sys.platform:
# Build for i386 & x86_64 since OpenCL doesn't run on PPC
if "-arch" not in conf["CXXFLAGS"]:
conf["CXXFLAGS"].extend(['-arch', 'i386'])
conf["CXXFLAGS"].extend(['-arch', 'x86_64'])
if "-arch" not in conf["LDFLAGS"]:
conf["LDFLAGS"].extend(['-arch', 'i386'])
conf["LDFLAGS"].extend(['-arch', 'x86_64'])
# Compile against 10.6 SDK, first to support OpenCL
conf["CXXFLAGS"].extend(['-isysroot', '/Developer/SDKs/MacOSX10.6.sdk'])
conf["LDFLAGS"].extend(['-isysroot', '/Developer/SDKs/MacOSX10.6.sdk'])
version=ver_dic["VERSION_TEXT"],
description="Python wrapper for OpenCL",
long_description="""
PyOpenCL lets you access GPUs and other massively parallel compute
devices from Python. It tries to offer computing goodness in the
spirit of its sister project `PyCUDA <http://mathema.tician.de/software/pycuda>`_:
* Object cleanup tied to lifetime of objects. This idiom, often
called
`RAII <http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization>`_
in C++, makes it much easier to write correct, leak- and
* Completeness. PyOpenCL puts the full power of OpenCL's API at
your disposal, if you wish. Every obscure `get_info()` query and
all CL calls are accessible.
* Automatic Error Checking. All CL errors are automatically
translated into Python exceptions.
* Speed. PyOpenCL's base layer is written in C++, so all the niceties
above are virtually free.
* Helpful and complete `Documentation <http://documen.tician.de/pyopencl>`_
as well as a `Wiki <http://wiki.tiker.net/PyOpenCL>`_.
* Liberal license. PyOpenCL is open-source under the MIT license and
* Broad support. PyOpenCL was tested and works with both AMD's and Nvidia's
CL implementations.
""",
author=u"Andreas Kloeckner",
author_email="inform@tiker.net",
license = "MIT",
url="http://mathema.tician.de/software/pyopencl",
classifiers=[
'Environment :: Console',
'Intended Audience :: Developers',
'Intended Audience :: Other Audience',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Natural Language :: English',
'Programming Language :: C++',
'Programming Language :: Python',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Physics',
],
# build info
packages=["pyopencl"],
zip_safe=False,
install_requires=[
"pytools>=7",
],
ext_package="pyopencl",
ext_modules=[
NumpyExtension("_cl",
[
"src/wrapper/wrap_cl.cpp",
],
include_dirs=INCLUDE_DIRS + EXTRA_INCLUDE_DIRS,
library_dirs=LIBRARY_DIRS + conf["CL_LIB_DIR"],
libraries=LIBRARIES + conf["CL_LIBNAME"],
define_macros=list(EXTRA_DEFINES.iteritems()),
extra_compile_args=conf["CXXFLAGS"],
extra_link_args=conf["LDFLAGS"],
),
])
if __name__ == '__main__':
main()