\documentclass[10pt]{article} % Packages \usepackage{caption} \usepackage{graphicx} \usepackage[bf,small]{titlesec} \usepackage{float} \usepackage{hyperref} \usepackage{subcaption} \restylefloat{figure} \begin{document} \section*{Graf's addition theorem} \begin{figure}[H] \centering \includegraphics{media/graf.eps} \caption{Graf's addition theorem} \end{figure} \emph{Graf's addition theorem} says % \[ C_\nu(w) e^{i \nu \chi} = \sum_{k = -\infty}^{\infty} C_{\nu + k}(u) \; J_k(v) e^{i k \alpha} \] % where $C_\nu$ can be a Hankel or Bessel function of index $\nu$. This holds when $|u| > |v|$. \footnote{See for instance \url{http://dlmf.nist.gov/10.23\#ii}} \section*{Expansions} In all subsequent formulas, $\theta_{xy}$ refers to the angle of the vector $x-y$ above the horizontal. \begin{figure}[H] \centering \begin{subfigure}[b]{0.4\linewidth} \centering \includegraphics{media/m-expn.eps} \caption{Multipole expansion} \end{subfigure} % \hspace{1cm} % \begin{subfigure}[b]{0.4\linewidth} \centering \includegraphics{media/l-expn.eps} \caption{Local expansion} \end{subfigure} \caption{Multipole and local expansions} \end{figure} For a multipole expansion, we wish to evaluate $H_0^1(|t - s|)$ where the target is farther from the center than the source. The multipole expansion takes the form % \[ H_0^{(1)}(|t - s|) = \sum_{k = -\infty}^{\infty} \underbrace{J_k(|s - c|) e^{- i k \theta_{sc}}}_{\textrm{coefficients}} H_k^{(1)}(|t - c|) e^{i k \theta_{tc}}. \] % In the local expansion, the target is closer to the center than the source. The local expansion takes the form % \[ H_0^{(1)}(|t - s|) = \sum_{k = -\infty}^{\infty} \underbrace{H_k^{(1)}(|s - c|) e^{i k \theta_{sc}}}_{\textrm{coefficients}} J_k(|t - c|) e^{- i k \theta_{tc}}. \] \section*{Multipole-to-multipole and local-to-local translations} We wish to shift the center of the expansion $c_1$ to a new center $c_2$ satisfying $|c_1 - c_2| < |s - c_1|$. The goal is to derive a formula for the new coefficients based on the old coefficients and $c_1 - c_2$. This can be done with the help of Graf's addition theorem. \begin{figure}[H] \centering \includegraphics{media/m2m-l2l-translation.eps} \caption{Multipole-to-multipole and local-to-local translation} \end{figure} For shifting the multipole coefficients: \[ J_k(|s - c_2|) e^{-i k \theta_{sc_2}} = \sum_{l = -\infty}^{\infty} \underbrace{J_{k + l}(|s - c_1|) e^{-i (k + l) \theta_{sc_1}}}_{\textrm{old coefficients}} \; J_l(|c_2 - c_1|) e^{i l \theta_{c_2 c_1}}. \] % In a similar way, for shifting the local expansion coefficients: % \[ H_k^{(1)}(|s - c_2|)e^{ik\theta_{sc_2}} = \sum_{l = -\infty}^{\infty} \underbrace{H_{k + l}^{(1)}(|s - c_1|) e^{i(k + l) \theta_{sc_1}} }_{\textrm{old coefficients}} \; J_l(|c_2 - c_1|) e^{-i l \theta_{c_2 c_1}}. \] \section*{Multipole-to-local translation} Given a multipole expansion with center $c_1$, we wish to shift to center $c_2$ where $c_1$ and $c_2$ satisfy $|c_2 - c_1| > |s - c_1|$. Furthermore, the coefficients at the new center will be coefficients for a local expansion. \begin{figure}[H] \centering \includegraphics{media/m2l-translation.eps} \caption{Multipole-to-local translation} \end{figure} The translated coefficients satisfy % \[ H_k^{(1)}(|s - c_2|) e^{i k \theta_{sc_2}} = (-1)^k \sum_{l = -\infty}^{\infty} \underbrace{J_l(|s - c_1|) e^{- i l \theta_{sc_1}}}_{\textrm{old coefficients}} H_{k + l}^{(1)}(|c_1 - c_2|) e^{i(k + l)\theta_{c_2c_1}}. \] \end{document}